Background: Aqueduct of Sylvius stenosis/obstruction interferes with cerebrospinal fluid (CSF) flow and leads to the non-communicating hydrocephalus. Acquired non-neoplastic causes of aqueduct of Sylvius stenosis/ obstruction include simple stenosis, gliosis, slit-like stenosis, and septal formation, but the detailed mechanisms are not clear. In the present study, we experienced a case of late-onset aqueductal membranous occlusion (LAMO) successfully treated by neuroendoscopic procedure, which allowed us to examine the pathology of the membranous structures of the aqueduct of Sylvius occlusion.

Case Description: A 66-year-old woman presented with gradually progressive gait disturbance, cognitive dysfunction, and urinary incontinenc. Brain magnetic resonance imaging (MRI) showed enlargement of the bilateral lateral ventricles and the third ventricle without dilatation of fourth ventricle, and heavily T2-weighted images showed an enlarged aqueduct of Sylvius and a membranous structure at its caudal end. Gadolinium contrast-enhanced T1-weighted images showed no neoplastic lesions. We diagnosed this case that the hydrocephalus due to late-onset idiopathic aqueductal stenosis or LAMO and the patient underwent endoscopic third ventriculostomy and endoscopic aqueduct oplasty. Membranous tissue specimens were obtained from the occluded aqueduct of Sylvius at the time of treatment. Histopathological examination revealed gliosis, and inside the gliosis, there were cell clusters that appeared to be ependymal cells and were corpora amylacea. We confirmed CSF flow at the site of obstruction of the aqueduct of Sylvius and the stoma of the third ventricle floor by MRI images. Her symptoms were improved immediately.

Conclusion: We experienced a case of LAMO successfully treated by neuroendoscopic procedure, which allowed us to examine the pathology of the membranous structure of the aqueduct of Sylvius. The pathological study of LAMO is rare, and we report it, including a review of the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070273PMC
http://dx.doi.org/10.25259/SNI_37_2023DOI Listing

Publication Analysis

Top Keywords

aqueduct sylvius
28
treated neuroendoscopic
12
neuroendoscopic procedure
12
late-onset aqueductal
8
aqueductal membranous
8
membranous occlusion
8
aqueduct
8
csf flow
8
experienced case
8
lamo treated
8

Similar Publications

[Risk factors for mortality in patients with spontaneous cerebellar hemorrhage based on Mimics software analysis].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China. Corresponding author: Liu Zhenning, Email:

Objective: To investigate the independent risk factors for short-term mortality in patients with spontaneous cerebellar hemorrhage (SCH) based on Mimics software of medical image control system.

Methods: The clinical data of SCH patients treated at Shengjing Hospital of China Medical University from January, 2010 to December, 2021 was retrospectively analyzed and compared, including gender, age, underlyin g diseases, Glasgow coma scale (GCS) and blood pressure at admission, laboratory indicators, imaging data, and short-term (3 weeks after onset) survival status. The imaging examination parameters were accurately calculated using Mimics software, including hematoma volume, longest diameter, and maximum cross-sectional area of cerebellar hemorrhage.

View Article and Find Full Text PDF
Article Synopsis
  • Wernicke-Korsakoff encephalopathy, a condition caused by vitamin B1 deficiency, often affects alcoholics and is characterized by memory issues, eye movement problems, and coordination difficulties.
  • A young male patient with a history of alcohol abuse presented with symptoms resembling a stroke, including right-sided weakness and language disturbances, complicating accurate diagnosis.
  • Following treatment with intravenous vitamin B1, the patient ultimately made a full recovery, highlighting how this condition can mimic stroke symptoms and posing challenges in emergency medical settings.
View Article and Find Full Text PDF

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Idiopathic normal pressure hydrocephalus (iNPH) is frequently difficult to diagnose due to the absence of specific symptoms, yet early detection and surgical intervention are essential for preventing sequela such as irreversible dementia. This study explores the specific magnetic resonance imaging (MRI) features of the brainstem and mesencephalic aqueduct in patients with iNPH. Head MRI data of 50 iNPH patients and 30 healthy matched controls were compared for mesencephalic aqueduct length, diameter, and angle, structural features of the brainstem at the sagittal plane, brainstem component volume ratios, angle between the brainstem and spinal cord, and the area and morphology of the pontine cisterns.

View Article and Find Full Text PDF

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!