Glioma is the most devastating high-grade tumor of the central nervous system, with dismal prognosis. Existing treatment modality does not provide substantial benefit to patients and demands novel strategies. One of the first-line treatments for glioma, temozolomide, provides marginal benefit to glioma patients. Repurposing of existing non-cancer drugs to treat oncology patients is gaining momentum in recent years. In this study, we investigated the therapeutic benefits of combining three repurposed drugs, namely, metformin (anti-diabetic) and epigallocatechin gallate (green tea-derived antioxidant) together with temozolomide in a glioma-induced xenograft rat model. Our triple-drug combination therapy significantly inhibited tumor growth and increased the survival rate (50%) of rats when compared with individual or dual treatments. Molecular and cellular analyses revealed that our triple-drug cocktail treatment inhibited glioma tumor growth in rat model through ROS-mediated inactivation of PI3K/AKT/mTOR pathway, arrest of the cell cycle at G1 phase and induction of molecular mechanisms of caspases-dependent apoptosis.In addition, the docking analysis and quantum mechanics studies performed here hypothesize that the effect of triple-drug combination could have been attributed by their difference in molecular interactions, that maybe due to varying electrostatic potential. Thus, repurposing metformin and epigallocatechin gallate and concurrent administration with temozolomide would serve as a prospective therapy in glioma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070706PMC
http://dx.doi.org/10.3389/fphar.2023.1096614DOI Listing

Publication Analysis

Top Keywords

epigallocatechin gallate
12
metformin epigallocatechin
8
glioma patients
8
rat model
8
triple-drug combination
8
tumor growth
8
glioma
6
combination metformin
4
gallate potentiates
4
potentiates glioma
4

Similar Publications

The effect of long-term administration of green tea catechins on aging-related cardiac diastolic dysfunction and decline of troponin I.

Genes Dis

March 2025

Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Aging is an independent risk factor for cardiovascular diseases. Cardiac diastolic dysfunction (CDD), ultimately leading to heart failure with preserved ejection fraction (HFpEF), is prevalent among older individuals. Although therapeutics have made great progress, preventive strategies remain unmet medical needs.

View Article and Find Full Text PDF

Cisplatin (CIS) is a broad-spectrum anticancer drug widely used in the clinic; however, one of its side effects is that it can cause intestinal damage such as loss of appetite, vomiting, and diarrhea in patients. Epigallocatechin gallate (EGCG) is one of the main active substances in green tea, which has the effects of antitumor multiple drug resistance, antioxidation, and antiinflammatory properties. The aim of this study was to explore the protective effect of EGCG on CIS-induced intestinal injury in rats.

View Article and Find Full Text PDF

Polyphenol oxidase mediated (-)-epigallocatechin gallate stabilized protein in body wall of Apostichopus japonicus: Characteristics and structure.

Food Chem

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Heat treatment is the most common processing method in Apostichopus japonicus (A. japonicus) processing. However, improper heat treatment can lead to the degradation of protein.

View Article and Find Full Text PDF

In this study, we evaluated the impact of Epigalocatechin-3-gallate (EGCG) on biofilm development for 24 and 46 h using high-resolution confocal laser scanning microscopy. EGCG treatment led to the formation of interspaced exopolysaccharide (EPS)-microcolony complexes unevenly distributed on the surface of hydroxyapatite disc, forming a thinner and less complex biofilm structure with significantly reduced biomass, matrix volume, and thickness compared to the NaCl treated group (negative control). At 46 h, the biofilm of the EGCG-treatment group failed to form the bacterial-EPS superstructures which is characteristic of the biofilm in the negative control group.

View Article and Find Full Text PDF

Mangiferin and EGCG Compounds Fight Against Hyperlipidemia by Promoting FFA Oxidation via AMPK/PPAR.

PPAR Res

December 2024

Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.

Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!