Unlabelled: Next-generation sequencing (NGS) has failed to detect mesenchymal epithelial transition factor gene () polysomy in previous studies. We included three non-small cell lung cancer (NSCLC) cohorts in this retrospective study to establish new criteria for detecting polysomy and to explore the clinical relevance of polysomy. Cohort 1 included 53 patients whose tissues were available for both FISH and NGS assays. Paired plasma and tissue samples were obtained from 261 patients with NSCLC as cohort 2. Cohort 3 included 46 patients with metastatic NSCLC, who presented with copy-number gain assessed by NGS. ROC analysis demonstrated that a cut-off point of 2.3 copies achieved the maximum Youden index in discriminating polysomy from normal copy number. Compared with the FISH test for polysomy, the sensitivity, specificity, and agreement of NGS were 90%, 90%, and 96.2%, respectively. Following optimization using maximum somatic allele frequency, the sensitivity and specificity of NGS for defining polysomy using plasma samples according to different circulating tumor DNA mutation frequencies were 42% and 63%. The concordance rate between tissue and plasma samples for detecting polysomy was 85%. Regarding the response to inhibitor, the median progression-free survival (PFS) of the amplification group was significantly higher than that of the polysomy group. The median PFS was similar between the polysomy and normal groups. Our results indicated that NGS may serve as an alternative method for detecting polysomy in NSCLC tissues. Moreover, patients with polysomy may not benefit from inhibitors.
Significance: In this study, we established a methodology to differentiate polysomy from normal copy numbers and amplification using NGS. Moreover, this study suggests that it is critical to discriminate polysomy from amplification, for the former may dilute the clinical benefit of inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072163 | PMC |
http://dx.doi.org/10.1158/2767-9764.CRC-22-0438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!