Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In a systematic review of a diagnostic performance, summarizing performance metrics is crucial. There are various summary models in the literature, and hence model selection becomes inevitable. However, most existing large-sample-based model selection approaches may not fit in a meta-analysis of diagnostic studies, typically having a rather small sample size. Researchers need to effectively determine the final model for further inference, which motivates this article to investigate existing methods and to suggest a more robust method for this need. We considered models covering several widely-used methods for bivariate summary of sensitivity and specificity. Simulation studies were conducted based on different number of studies and different population sensitivity and specificity. Then final models were selected using several existing criteria, and we compared the summary receiver operating characteristic (sROC) curves to the theoretical ROC curve given the generating model. Even though parametric likelihood-based criteria are often applied in practice for their asymptotic property, they fail to consistently choose appropriate models under the limited number of studies. When the number of studies is as small as 10 or 5, our suggestion is best in different scenarios. An example for summary ROC curves for chemiluminescence immunoassay (CLIA) used in COVID-19 diagnosis is also illustrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071901 | PMC |
http://dx.doi.org/10.1080/02664763.2022.2041565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!