Determination of lower radiation dose limit for automatic measurement of adipose tissue.

J Appl Clin Med Phys

Radiology & Medical Imaging, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.

Published: May 2023

The purpose of this study was to determine the lower limit of radiation dose required to measure visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volumes when a fat quantification and noise reduction techniques (NRTs) are combined. For this purpose, we utilized CT colonography (CTC) images taken at low doses and manually segmented VAT and SAT fat volumes as ground truth. In order to derive the acceptable precision of the measurements needed to estimate the lower limit of radiation dose, we estimated the effect of different positioning during CT scanning on fat measurements using manually segmented VAT and SAT against normal dose. As a result, the acceptable accuracy of SAT and VAT was found to be 94.5% and 85.2%, respectively. Using these thresholds, the lower radiation dose limit required to accurately measure SAT using 5.25-mm slice-thick images was 1.5 mGy of size-specific dose estimates (SSDE), while the lower radiation dose limit required to accurately measure VAT was 0.4 mGy of SSDE. The lower dose limit for SAT and VAT combined was 1.5 mGy, which was equivalent to an estimated effective dose of 0.38 mSv. Alternatively, without noise reduction, SAT could not achieve acceptable accuracy even for images with a slice thickness of 5.25 mm, while VAT required noise reduction for images with a slice thickness of 1.25 mm, but could achieve acceptable accuracy without noise reduction for images with a slice thickness of 5.25 mm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161034PMC
http://dx.doi.org/10.1002/acm2.13958DOI Listing

Publication Analysis

Top Keywords

radiation dose
20
dose limit
16
noise reduction
16
lower radiation
12
adipose tissue
12
acceptable accuracy
12
images slice
12
slice thickness
12
dose
9
lower limit
8

Similar Publications

Background: Recent preclinical studies have revealed a significant reduction in amyloid-β plaques and pro-inflammatory cytokines in Alzheimer's disease (AD) mouse models following low-dose radiation therapy (LDRT). This phase II, multicenter, prospective, single-blinded, randomized controlled trial (NCT05635968, funding from Korea Hydro & Nuclear Power: Grant No. A21IP11) aims to investigate the efficacy and safety of whole-brain LDRT in patients with AD.

View Article and Find Full Text PDF

Anthracyclines (ANTs) are widely used in cancer therapy, particularly for lymphoma, sarcoma, breast cancer, and childhood leukemia, and have become the cornerstone of chemotherapy for various malignancies. However, it is associated with fatal and dose-dependent cardiovascular complications, especially cardiotoxicity. Mitochondrial quality control mechanisms, encompassing mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, maintain mitochondrial homeostasis in the cardiovascular system.

View Article and Find Full Text PDF

Longikaurin A (LK-A), a naturally occurring ent-kaurane diterpenoid, has been identified as a promising anti-cancer agent. This study aims to elucidate the anti-tumorigenic effects of LK-A on oral squamous cell carcinoma (OSCC) cells and to unravel its underlying mechanisms. assays, including CCK-8 and EdU, were performed to assess cell viability and proliferation.

View Article and Find Full Text PDF

Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion.

View Article and Find Full Text PDF

Risk-adapted stereotactic body radiation therapy is preferred over conventional radiotherapy at the authors' institution based on the hypothesis that even with a lower than recommended dose, stereotactic body radiation therapy would yield better local control than conventional radiotherapy. This retrospective study was performed to verify the hypothesis. Data from 34 patients with non-small cell lung cancer, who underwent risk-adapted stereotactic body radiation therapy delivered in 4 fractions between 2012 and 2018, were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!