Background: Cardiovascular disease, one of the most common types of disease in clinical practice today, carries a very high risk of disability and death. This research aims to examine genome-wide changes in injured human dermal microvascular endothelial cells (HDMECs) using the Ribonucleic Acid sequencing (RNA-Seq) technique, and to search for key genes influencing N6-methyladenosine (m6A) methylation, thus gaining new insights into future clinical diagnosis and treatment of cardiovascular diseases (CVDs) and laying a foundation for follow-up research.
Methods: Impaired HDMECs (injury group), established by endotoxin intervention, were analyzed by RNA-Seq for differentially expressed genes (DEGs) relative to normal HDMECs (control group). Then, DEGs that might be associated with m6A methylation were selected for expression blocking to observe m6A methylation alterations. The migration, angiogenesis, and inflammatory response of damaged HDMECs were detected by cell scratch assay, western blotting, and Enzyme-linked Immunosorbent Assay (ELISA) experiments, respectively.
Results: In this study, 20 DEGs were screened out from the two groups by RNA-Seq, of which 17 were up-regulated and 3 were down-regulated. The C-C motif chemokine receptor 10 () was selected for subsequent analysis. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) identified elevated expression and reduced m6A methylation levels in the injury group ( < 0.05). After blocking expression in damaged HDMECs by BI6901 (a specific blocker) m6A methylation, cell activity, vascular endothelial growth factor A (VEGFA) and CD31 protein expression, as well as relative length and branches of tube formation were found to be increased compared with the injury group, while the levels of inflammatory factors interleukin-1 (IL-1), interleukin-1 (IL-6) and tumor necrosis factor-α (TNF-α) were decreased ( < 0.05).
Conclusions: Blocking expression can activate m6A methylation, promote cell activity, inhibit inflammatory reactions and alleviate HDMEC injury, which may become a breakthrough in future diagnosis and treatment of cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24976/Discov.Med.202335174.5 | DOI Listing |
Anal Cell Pathol (Amst)
January 2025
Department of Urology, The First Hospital of Jilin University, Changchun, China.
This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.
View Article and Find Full Text PDFBiomed J
January 2025
Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan. Electronic address:
Int J Rheum Dis
January 2025
The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China. Electronic address:
Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!