Floquet band engineering in action.

Sci Bull (Beijing)

Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Hamburg 22761, Germany; Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York NY 10010, USA. Electronic address:

Published: April 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.03.046DOI Listing

Publication Analysis

Top Keywords

floquet band
4
band engineering
4
engineering action
4
floquet
1
engineering
1
action
1

Similar Publications

Dispersive nodal fermions along grain boundaries in Floquet topological crystals.

Sci Rep

January 2025

Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA.

Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum ( ) and the Burgers vector ( ) of the constituting array of dislocations satisfy (modulo ).

View Article and Find Full Text PDF

Owing to its topological properties and band collapse, Floquet helical photonic lattices have gained increasing attention as a purely classical setting to realize the optical analogues of a wide variety of quantum phenomena. We demonstrate both theoretically and numerically that light propagation in an appropriately designed helical superlattice can exhibit spatial photonic Zitterbewegung effect, i.e.

View Article and Find Full Text PDF

Here we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and -gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited.

View Article and Find Full Text PDF

Manipulating the symmetry of photon-dressed electronic states.

Nat Commun

December 2024

Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China.

Strong light-matter interaction provides opportunities for tailoring the physical properties of quantum materials on the ultrafast timescale by forming photon-dressed electronic states, i.e., Floquet-Bloch states.

View Article and Find Full Text PDF

Floquet analysis on an irradiated nodal surface semimetal with non-symmorphic symmetry.

J Phys Condens Matter

December 2024

AKPC Mahavidyalaya, Bengai, West Bengal 712611, India.

A nodal surface semimetal (NSSM) features symmetry enforced band crossings along a surface within the three-dimensional (3D) Brillouin zone (BZ) and a presence of a nonsymmorphic symmetry there pushes such surfaces to stick to the BZ center or boundaries. The topological robustness of the same does not always come with nonzero Berry fluxes. We consider two such NS, one with zero and another with nonzero topological charges and investigate the effect of light irradiation on them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!