Volatile organic compounds (VOCs) emitted from various sources into atmosphere could cause serious O pollution in urban areas. Although characterizations of ambient VOCs have been extensively studied in megacities, they are scarcely investigated in medium/small-sized cities, which could present different pollution characterizations due to the factors like emission sources and populations. Herein, field campaigns were conducted concurrently at six sites in a medium-sized city of Yangtze River Delta region to determine ambient levels, O formations and source contributions of summertime VOCs. During the observation period, the total VOC (TVOCs) mixing ratios ranged from 27.10 ± 3.35 to 39.09 ± 10.84 ppb at six sites. The ozone formation potential (OFP) results showed that alkenes, aromatics and oxygenated VOCs (OVOCs) were dominant contributors, together sharing 81.4% of total calculated OFPs. Ethene ranked the largest OFP contributor at all six sites. A high VOC site, KC, was selected as a case to detailed analyze diurnal variations of VOCs and its relationship with O. Consequently, diurnal patterns varied with VOC groups, and TVOC concentrations were lowest during strong photochemical period (15:00-18:00 p.m.), opposite to the O peak. VOCs/NOx ratios and observation-based model (OBM) analysis revealed that O formation sensitivity was primarily in transition regime in summertime and that the reduction of VOCs rather than NO would be more efficient to suppress O peak at KC during pollution episode. Additionally, source apportionment conducted with positive matrix factorization (PMF) indicated that industrial emission (29.2%-51.7%) and gasoline exhaust (22.4%-41.1%) were major sources for VOCs at all six sites, and that VOCs from industrial emissions and gasoline exhaust were the key precursors for ozone formation. Our results shed light on the importance of alkenes, aromatics and OVOCs in forming O and propose that preferentially reducing VOCs especially those from industrial emission and gasoline exhaust would benefit alleviating O pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138609 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Inorganic and Organic Chemistry, University Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
In this work, a series of BaMnCuO samples (x: 1, 0.9, 0.8, and 0.
View Article and Find Full Text PDFObjective: This study sought to evaluate the value of a CO field-flooding device in cardiopulmonary bypass (CPB) surgical procedures for congenital heart disease (CHD) performed via a right-side small incision approach.
Methods: Between April 2022 and December 2023, 234 children with simple CHD who underwent CPB via a right-side small incision approach were separated into a control group (n = 93) without the use of a CO field-flooding device and a treatment group (n = 141) in which this device was added to the traditional surgical manual exhaust. Demographic, perioperative, arterial blood gas (ABG), and laboratory test data were then compared between these groups of patients.
Nanoscale
January 2025
Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima 739-8527, Japan.
Highly ordered porous structured particles comprising three-way catalyst (TWC) nanoparticles have attracted attention because of their remarkable catalytic performance. However, the conditions for controlling their pore arrangement to form interconnected pore structures remain unclear. In particular, the correlation between framework thickness (distance between pores) or macroporosity and the diffusion of gaseous reactants to achieve a high catalytic performance has not been extensively discussed.
View Article and Find Full Text PDFACS Omega
January 2025
School of Mechanical Engineering, VIT-AP University, Amaravati, Andhra Pradesh 522237, India.
Waste plastic oils (WPOs) can help address the global energy crisis caused by the rapid depletion of fossil fuels, global warming, and strict emission regulations. The present research delves into the intricate interplay of higher alcohol blends in the context of combustion, performance, and emission characteristics within a common rail direct injection engine. In this regard, 1-hexanol has been selected as the blending constituent for the WPO to tackle emission challenges while concurrently reducing dependence on conventional fuel, as it stands out for its enhanced fuel properties compared to lower alcohols.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
In this study, a series of experiments are done to analyze the effect of bluff body geometry on the NO reduction of a natural gas-air stratified swirl burner. The stratified burner of Cambridge University is chosen to study the mentioned geometrical effect, and the geometry modification of bluff body is used as a simple method for NO reduction, which can be easily applied to the systems using these burners, including gas turbines. The bluff body geometrical change to an annular bluff body is inspired by the fact that the areas in which the edge of the bluff body is in contact with the unburned flow have lower temperatures, which can drastically affect combustion parameters, especially emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!