A systematic review and repeatability study on the use of deep learning for classifying and detecting tuberculosis bacilli in microscopic images.

Prog Biophys Mol Biol

Machine Intelligence and Data Science (MINDS) Laboratory, Department of Electrical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil. Electronic address:

Published: May 2023

Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent. This disease usually affects the lungs (pulmonary TB) and can be cured in most cases with a quick diagnosis and proper treatment. Microscopic sputum smear is widely used to diagnose and manage pulmonary TB. Despite being relatively fast and low cost, it can be exhausting because it depends on manually counting TB bacilli (Mycobacterium tuberculosis) in microscope images. In this context, different Deep Learning (DL) techniques are proposed in the literature to assist in performing smear microscopy. This article presents a systematic review based on the PRISMA procedure, which investigates which DL techniques can contribute to classifying TB bacilli in microscopic images of sputum smears using the Ziehl-Nielsen method. After an extensive search and a careful inclusion/exclusion procedure, 28 papers were selected from a total of 400 papers retrieved from nine databases. Based on these articles, the DL techniques are presented as possible solutions to improve smear microscopy. The main concepts necessary to understand how such techniques are proposed and used are also presented. In addition, replication work is also carried out, verifying reproducibility and comparing different works in the literature. In this review, we look at how DL techniques can be a partner to make sputum smear microscopy faster and more efficient. We also identify some gaps in the literature that can guide which issues can be addressed in other works to contribute to the practical use of these methods in laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2023.03.002DOI Listing

Publication Analysis

Top Keywords

smear microscopy
12
systematic review
8
deep learning
8
bacilli microscopic
8
microscopic images
8
sputum smear
8
techniques proposed
8
techniques
5
review repeatability
4
repeatability study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!