A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling cybersecurity regulations for automated vehicles. | LitMetric

Technological advancements in Connected and Automated Vehicles (CAVs), particularly the integration of diverse stakeholder groups (communication service providers, road operators, automakers, repairers, CAV consumers, and the general public) and the pursuit of new economic opportunities, have resulted in the emergence of new technical, legal, and social challenges. The most pressing challenge is deterring criminal behaviour in both the physical and cyber realms through the adoption of CAV cybersecurity protocols and regulations. However, the literature lacks a systematic decision tool to analyze the impact of the potential cybersecurity regulations for dynamically interacting stakeholders, and to identify the leverage points to minimise the cyber-risks. To address this knowledge gap, this study uses systems theory to develop a dynamic modelling tool to analyze the indirect consequences of potential CAVs cybersecurity regulations in the medium to long term. It is hypothesized that CAVs Cybersecurity Regulatory Framework (CRF) is the property of the entire ITS stakeholders. The CRF is modelled using the System Dynamic based Stock-and-Flow-Model (SFM) technique. The SFM is founded on five critical pillars: the Cybersecurity Policy Stack, the Hacker's Capability, Logfiles, CAV Adopters, and intelligence-assisted traffic police. It is found that decision-makers should focus on three major leverage points: establishing a CRF grounded on automakers' innovation; sharing risks in eliminating negative externalities associated with underinvestment and knowledge asymmetries in cybersecurity; and capitalising on massive CAV-generated data in CAV operations. The formal integration of intelligence analysts and computer crime investigators to strengthen traffic police capabilities is pivotal. Recommendations for automakers include data-profiteering in CAV design, production, sales, marketing, safety enhancements and enabling consumer data transparency.Furthermore, CAVs-CRF necessitate a balanced approach to the trade-off between: i) data accessibility constraints on CAV automakers and ITS service providers; ii) regulator command and control thresholds; iii) automakers' business investment protection; and iv) consumers' data privacy guard.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2023.107054DOI Listing

Publication Analysis

Top Keywords

cybersecurity regulations
12
automated vehicles
8
service providers
8
tool analyze
8
leverage points
8
cavs cybersecurity
8
traffic police
8
cav
6
cybersecurity
6
modelling cybersecurity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!