Dealkalization is a prerequisite to converting bauxite residue into non-hazardous materials that can be used for various upcycling applications. Structural alkali (Na) lodged inside the densely packed aluminosilicate-cages of sodalite, the dominant desilication product from refining alumina, is a common culprit in the persistence of strong alkalinity of bauxite residue. The present study unravelled chemical and mineralogical processes involved in sodalite dealkalization, driven by organic and inorganic acids. These acids have different H dissociation coefficients and their anions have different chelation abilities with surface metal atoms of aluminosilicate minerals. The efficacy of sodium removal by exposure to the acids was found not only dependent on the acid strength (pK), but also on the chelating property of dissociated conjugate anions. Following an initial H-Na exchange, Na removal from sodalite was correlated with partial hydrolysis of aluminosilicate network and resultant chelating reactions with acid anions. The selection of organic and inorganic acids whose conjugate bases possess good chelating capability in the pH buffer zone 7-9 (e.g., oxalate or phosphate), would provide significant aid to the dealkalization process. The findings in this study are crucial in understanding the conversion of bauxite residue into a soil-like growth media (technosol) for sustainable mined land rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.117837 | DOI Listing |
Chemosphere
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China. Electronic address:
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.
View Article and Find Full Text PDFACS Omega
December 2024
Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China.
To immobilize the activity and bioavailability of soil Cd, the single treatment only flooding (F) and the combined treatments with flooding plus bauxite residue (F-B) or lime (F-L) were designed to investigate the impacts of different treatments on the toxicity and bioavailability of Cd in contaminated soil. Compared with the single treatment (F), the combined treatments (F-B and F-L) improved soil-associated organic functional groups and aggregated stability in soil. The average particle sizes of soil aggregates increased from 126 nm (F-treated soil) to 256 and 270 nm following F-B and F-L treatments, respectively.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
Bioresour Technol
November 2024
FPInnovations, 2665 East Mall, Vancouver, BC V6T 1Z4, Canada.
Biomass gasification as a renewable energy technology has been a widely explored research and development area. The efficient and economic removal of harmful components, particularly tars, in raw syngas from the biomass gasifier is still a major challenge. In this study, a novel two-stage fluidized bed pilot-scale gasifier has been developed to enhance the steam-oxygen biomass gasification to generate low-tar syngas; while, a prototype hot syngas cleanup system has been designed, built and tested to further reduce the tar content and purify the syngas from the biomass gasifier for downstream applications.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, 31621, Dhahran, Saudi Arabia.
This study aims to reach a sustainable solution for waste management of medical plastics through value-added product extraction. It uses the DOE technique to examine the effect of natural zeolite and synthetic AlO and SiO as catalysts. A small lab-scale pyrolysis setup was used for medical plastic waste management treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!