Recent advances towards micro(nano)plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts.

J Hazard Mater

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Published: June 2023

AI Article Synopsis

  • - The paper reviews the sources, characteristics, and ecological effects of microplastics and nanoplastics (MPs/NPs) in wetland ecosystems, highlighting their persistence and potential environmental risks.
  • - It analyzes the mechanisms of MP/NP removal in wetlands and explores their eco-toxicological impacts on plants, animals, and microbes, particularly focusing on changes in microbial communities that affect pollutant removal.
  • - The study identifies gaps in current knowledge and offers recommendations for future research, especially regarding the ecological impacts of various MPs/NPs and their role in contaminant migration and antibiotic resistance.

Article Abstract

In recent years, microplastics/nanoplastics (MPs/NPs) have received substantial attention worldwide owing to their wide applications, persistence, and potential risks. Wetland systems are considered to be an important "sink" for MPs/NPs, which can have potential ecological and environmental effects on the ecosystem. This paper provides a comprehensive and systematic review of the sources and characteristics of MPs/NPs in wetland ecosystems, together with a detailed analysis of MP/NP removal and associated mechanisms in wetland systems. In addition, the eco-toxicological effects of MPs/NPs in wetland ecosystems, including plant, animal, and microbial responses, were reviewed with a focus on changes in the microbial community relevant to pollutant removal. The effects of MPs/NPs exposure on conventional pollutant removal by wetland systems and their greenhouse gas emissions are also discussed. Finally, current knowledge gaps and future recommendations are presented, including the ecological impact of exposure to various MPs/NPs on wetland ecosystems and the ecological risks of MPs/NPs associated with the migration of different contaminants and antibiotic resistance genes. This work will facilitate a better understanding of the sources, characteristics, and environmental and ecological impacts of MPs/NPs in wetland ecosystems, and provide a new perspective to promote development in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131341DOI Listing

Publication Analysis

Top Keywords

wetland ecosystems
20
mps/nps wetland
16
wetland systems
12
wetland
8
systematic review
8
review sources
8
ecological impacts
8
mps/nps
8
sources characteristics
8
effects mps/nps
8

Similar Publications

Bryophyte literature records database of Aysén, Chilean sub-Antarctic ecoregion.

Sci Data

January 2025

Departamento de Biodiversidad, Ecología y Evolución. Universidad Complutense de Madrid, Madrid, Spain.

The Chilean sub-Antarctic ecoregion hosts the largest expanse of temperate forests, wetlands and peatlands, as well as the largest proportion of protected areas in the southern hemisphere. Bryophytes are highly diverse and ecologically essential in sub-Antarctic ecosystems and are considered as biodiversity loss indicators caused by the current socio-ecological crisis. However, knowledge about their biodiversity is rather limited.

View Article and Find Full Text PDF

Seasonally inundated areas (SIA) within aquatic systems are characterized by elevated methylmercury (MeHg) production. Nevertheless, the response characteristics of dissolved organic matter (DOM) quality in SIA sediments, including its molecular compositions and structure, and their impacts on the MeHg production are not yet fully understood. This research gap has been addressed through field investigations and microcosm experiments conducted in a metal-polluted plateau wetland.

View Article and Find Full Text PDF

Numeric uptake drives nanoplastic toxicity: Size-effects uncovered by toxicokinetic-toxicodynamic (TKTD) modeling.

J Hazard Mater

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Predicting nanoplastic bioaccumulation and toxicity using process-based models is challenging due to the difficulties in tracing them at low concentrations. This study investigates the size-dependent effects of nanoplastic exposure on Daphnia magna using a toxicokinetic-toxicodynamic (TKTD) model. Palladium-doped fluorescent nanoplastics in three sizes (30-nm, 66-nm, 170-nm) were tested at two numeric exposure concentrations.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!