A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A digital nanoplasmonic microarray immunosensor for multiplexed cytokine monitoring during CAR T-cell therapy from a leukemia tumor microenvironment model. | LitMetric

A digital nanoplasmonic microarray immunosensor for multiplexed cytokine monitoring during CAR T-cell therapy from a leukemia tumor microenvironment model.

Biosens Bioelectron

Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA. Electronic address:

Published: June 2023

The release of cytokines by chimeric antigen receptor (CAR) T-cells and tumor resident immune cells defines a significant part of CAR T-cell functional activity and patient immune responses during CAR T-cell therapy. However, few studies have so far precisely characterized the cytokine secretion dynamics in the tumor niche during CAR T-cell therapy, which requires multiplexed, and timely biosensing platforms and integration with biomimetic tumor microenvironment. Herein, we implemented a digital nanoplasmonic microarray immunosensor with a microfluidic biomimetic Leukemia-on-a-Chip model to monitor cytokine secretion dynamics during CD19 CAR T-cell therapy against precursor B-cell acute lymphocytic leukemia (B-ALL). The integrated nanoplasmonic biosensors achieved precise multiplexed cytokine measurements with low operating sample volume, short assay time, heightened sensitivity, and negligible sensor crosstalk. Using the digital nanoplasmonic biosensing approach, we measured the concentrations of six cytokines (TNF-α, IFN-γ, MCP-1, GM-CSF, IL-1β, and IL-6) during first 5 days of CAR T-cell treatment in the microfluidic Leukemia-on-a-Chip model. Our results revealed a heterogeneous secretion profile of various cytokines during CAR T-cell therapy and confirmed a correlation between the cytokine secretion profile and the CAR T-cell cytotoxic activity. The capability to monitor immune cell cytokine secretion dynamics in a biomimetic tumor microenvironment could further help in study of cytokine release syndrome during CAR T-cell therapy and in development of more efficient and safer immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103176PMC
http://dx.doi.org/10.1016/j.bios.2023.115247DOI Listing

Publication Analysis

Top Keywords

car t-cell
36
t-cell therapy
24
cytokine secretion
16
digital nanoplasmonic
12
tumor microenvironment
12
secretion dynamics
12
car
10
t-cell
9
nanoplasmonic microarray
8
microarray immunosensor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!