MicroRNA-125b (miR-125b) is highly associated with synaptic dysfunction and tau hyperphosphorylation in the early pathogenesis of Alzheimer's disease (AD), making it a promising biomarker for early AD diagnosis. Hence, there is an urgent need for a reliable sensing platform to assist in situ miR-125b detection. In this work, we report a dual "turn-on" fluorescence biosensor based on the nanocomposite of aggregation-induced emission fluorogen (AIEgen)-labeled oligonucleotide (TPET-DNA) probes immobilized on the surface of cationic dextran modified molybdenum disulfide (TPET-DNA@Dex-MoS). In the presence of the target, TEPT-DNA can hybridize with miR-125b to form a DNA/RNA duplex, causing TPET-DNA to detach from the surface of Dex-MoS that simultaneously activates the dual fluorescence enhancement processes: (1) recovery of TPET-DNA signal and (2) strong fluorescent emission from AIEgen triggered by restriction of the intramolecular rotation. The sensing performance of TPET-DNA@Dex-MoS was demonstrated by detecting miR-125b in vitro with good sensitivity at the picomolar level and rapid response (≤1 h) without amplification procedures. Furthermore, our nanoprobes exhibited excellent imaging capabilities to aid real-time monitoring of the endogenous miR-125b in PC12 cells and brain tissues of mice AD model induced by local administration of okadaic acid (OA). The fluorescence signals of the nanoprobes indicated miR-125b was spatially associated with phosphorylated tau protein (p-tau) in vitro and in vivo. Therefore, TPET-DNA@Dex-MoS could be a promising tool for in situ and real-time monitoring of the AD-related microRNAs and also provide mechanistic insight into the early prognosis of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115270 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.
View Article and Find Full Text PDFAnal Chem
January 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.
View Article and Find Full Text PDFACS Omega
December 2024
Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai 600014, India.
Four dual-responsive probe molecules 1,5-bis(thiophene-2-carbaldehyde)carbohydrazone (R1), 1,5-bis(thiophene-2-carbaldehyde)thiocarbohydrazone (R2), 1,5-bis(indole-3-carbaldehyde)carbohydrazone (R3), and 1,5-bis(indole-3-carbaldehyde)thiocarbohydrazone (R4) were synthesized, characterized, and investigated for their sensing efficacy. The initial sensing behavior of the probes was tested by colorimetric signaling, followed by spectral and theoretical techniques, which supported the dual-sensing ability of the selected inorganic ions. The probes exhibited highly selective optical recognition for Cu/Fe cations and F/ClO anions compared to the tested cations and anions.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Basic Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!