Visible light (VL) surely affects human skin in several ways, exerting positive (tissue regeneration, pain relief) and negative (oxidation, inflammation) effects, depending on the radiation dose and wavelength. Nevertheless, VL continues to be largely disregarded in photoprotection strategies, perhaps because the molecular mechanisms occurring during the interaction of VL with endogenous photosensitizers (ePS) and the subsequent biological responses are still poorly understood. Besides, VL encompass photons with different properties and interaction capacities with the ePS, but there are no quantitative comparisons of their effects on humans. Here, we studied the effects of physiologically relevant doses of four wavelengths ranges of VL, i.e. (in nm), 408-violet, 466/478-blue, 522-green, 650-red, in immortalized human skin keratinocytes (HaCaT). The level of cytotoxicity/damage follows the order: violet>blue >green>red. Violet and blue light induced the highest levels of Fpg-sensitive lesions in nuclear DNA, oxidative stress, lysosomal and mitochondrial damage, disruption of the lysosomal-mitochondrial axis of cell homeostasis, blockade of the autophagic flux, as well as lipofuscin accumulation, greatly increasing the toxicity of wideband VL to human skin. We hope this work will stimulate in development of optimized sun protection strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2023.112703 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!