Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO Reduction.

J Am Chem Soc

Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: May 2023

Molecule-based heterogeneous photocatalysts without noble metals are one of the most attractive systems for visible-light-driven CO reduction. However, reports on this class of photocatalysts are still limited, and their activities are quite low compared to those containing noble metals. Herein, we report an iron-complex-based heterogeneous photocatalyst for CO reduction with high activity. The key to our success is the use of a supramolecular framework composed of iron porphyrin complexes bearing pyrene moieties at positions. The catalyst exhibited high activity for CO reduction under visible-light irradiation (29100 μmol g h for CO production, selectivity 99.9%), which is the highest among relevant systems. The performance of this catalyst is also excellent in terms of apparent quantum yield for CO production (0.298% at 400 nm) and stability (up to 96 h). This study provides a facile strategy to create a highly active, selective, and stable photocatalyst for CO reduction without utilizing noble metals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c00783DOI Listing

Publication Analysis

Top Keywords

noble metals
12
supramolecular framework
8
visible-light-driven reduction
8
photocatalyst reduction
8
high activity
8
reduction
5
iron-complex-based supramolecular
4
framework catalyst
4
catalyst visible-light-driven
4
reduction molecule-based
4

Similar Publications

Nickel alloys are widely used in the oil and gas industry where high corrosion resistance in chloride water or in sour environments is required. When high mechanical properties are required in combination with high corrosion properties, alloy 718 (UNS N07718) is one of the preferred choices, although it still presents limitations in terms of corrosion resistance in some applications: despite offering outstanding resistance to localized corrosion, alloy 718 is not immune to it. Its high corrosion resistance is mainly due to its high nickel and chromium contents combined with additions of molybdenum and other noble elements.

View Article and Find Full Text PDF

General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:

The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.

View Article and Find Full Text PDF

In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Structural Changes in Atomically Precise Ag Nanoclusters upon Sequential Attachment and Detachment of Secondary Ligands.

ACS Nano

January 2025

DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Elucidating the structural dynamics of ligand-stabilized noble metal nanoclusters (NCs) is critical for understanding their properties and for developing applications. Ligand rearrangement at NC surfaces is an important contributor to structural change. In this study, we investigate the dynamic behavior of ligand-protected [Ag(L)] NC's (L = 1,3-benzenedithiol) interacting with secondary ligand 2,2'-[1,4-phenylenebis (methylidynenitrilo)] bis[benzenethiol] (referred to as ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!