A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A crosslinked coral-like Co@CoO/RGO nanohybrid structure with good electromagnetic wave absorption performance. | LitMetric

A crosslinked coral-like Co@CoO/RGO nanohybrid structure with good electromagnetic wave absorption performance.

J Colloid Interface Sci

NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Published: July 2023

The combination of magnetic and dielectric materials followed by appropriate structure design is an effective approach to achieve high electromagnetic wave absorption properties. Here, crosslinked Co@CoO/reduced graphene oxide nanohybrids (CCRGO) were fabricated via a simple three-step method. The experimental results show that compared with previous works, the as-prepared CCRGO nanohybrids achieve higher electromagnetic wave absorption and broader effective bandwidth at a lower filler loading. The electromagnetic parameters and electromagnetic wave absorption performance could be apparently adjusted by controlling the adding content of graphene oxide (GO) and the reduction temperature. Among a series of samples, CCRGO3-650 nanohybrid yields the best electromagnetic wave absorption performance benefiting from the proper GO addition and reduction temperature. At a filler loading of 20 wt%, the maximal reflection loss reaches to -64.67 dB at a thickness of 2.53 mm and the effective bandwidth below -10 dB covers the whole X band at a thickness of 2.51 mm. The good performance may be ascribed to the advantages of the dielectric and magnetic component as well as the special crosslinked structure, which triggers a synergistic absorption mechanism including multiple reflection/scattering, interface polarization, dipole polarization, conductive loss, eddy current loss, exchange resonance in the electromagnetic wave dissipation process. The good electromagnetic wave absorption performance affirms the potential application of CCRGO nanohybrids in the field of stealth materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.183DOI Listing

Publication Analysis

Top Keywords

electromagnetic wave
28
wave absorption
24
absorption performance
16
electromagnetic
8
good electromagnetic
8
graphene oxide
8
ccrgo nanohybrids
8
effective bandwidth
8
filler loading
8
reduction temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!