Tripartite motif-containing protein 7 (TRIM7), the member of tripartite motif (TRIM) family, plays an important role in innate immune responses against viral infection. Among them, the function of TRIM7 in Encephalomyocarditis virus (EMCV) infection has not been reported. Here, we found that TRIM7 inhibited the replication of EMCV through the type I interferon (IFN) signaling pathway. Interestingly, TRIM7 was down-regulated after EMCV infection in HEK293T cells. Further, overexpression of TRIM7 suppressed the replication of EMCV in HEK293T cells and enhanced the activity of IFN-β promoter. On the other hand, knockdown of the endogenous TRIM7 promoted EMCV infection and impaired the activity of IFN-β promoter. TRIM7 could regulate retinoic acid-inducible gene I (RIG-I)/ melanoma differentiation-associated gene 5 (MDA5)/ mitochondrial antiviral-signaling protein (MAVS) mediated IFN-β signaling pathway. Moreover, TRIM7 interacted with MAVS and they were co-located in HEK293T cells. We demonstrate that TRIM7 plays a positive role in IFN-β signaling pathway during EMCV infection and suppresses EMCV replication. Taken together, the presented results suggest that TRIM7 has a pivotal function in anti-EMCV infection, thereby providing a potential target for further development of anti-EMCV inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2023.109729 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!