Background: Severe reduced synaptic density was observed in spinocerebellar ataxia (SCA) in postmortem neuropathology, but in vivo assessment of synaptic loss remains challenging. OBJECTIVE SPINOCEREBELLAR ATAXIA TYPE 3: The objective of this study was to assess in vivo synaptic loss and its clinical correlates in spinocerebellar ataxia type 3 (SCA3) patients by synaptic vesicle glycoprotein 2A (SV2A)-positron emission tomography (PET) imaging.

Methods: We recruited 74 SCA3 individuals including preataxic and ataxic stages and divided into two cohorts. All participants received SV2A-PET imaging using F-SynVesT-1 for synaptic density assessment. Specifically, cohort 1 received standard PET procedure and quantified neurofilament light chain (NfL), and cohort 2 received simplified PET procedure for exploratory purpose. Bivariate correlation was performed between synaptic loss and clinical as well as genetic assessments.

Results: In cohort 1, significant reductions of synaptic density were observed in cerebellum and brainstem in SCA3 ataxia stage compared to preataxic stage and controls. Vermis was found significantly involved in preataxic stage compared to controls. Receiver operating characteristic (ROC) curves highlighted SV2A of vermis, pons, and medulla differentiating preataxic stage from ataxic stage, and SV2A combined with NfL improved the performance. Synaptic density was significantly negatively correlated with disease severity in cerebellum and brainstem (International Co-operative Ataxia Rating Scale: ρ ranging from -0.467 to -0.667, P ≤ 0.002; Scale of Assessment and Rating of Ataxia: ρ ranging from -0.465 to -0.586, P ≤ 0.002). SV2A reduction tendency of cerebellum and brainstem identified in cohort 1 was observed in cohort 2 with simplified PET procedure.

Conclusions: We first identified in vivo synaptic loss was related to disease severity of SCA3, suggesting SV2A PET could be a promising clinical biomarker for disease progression of SCA3. © 2023 International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.29395DOI Listing

Publication Analysis

Top Keywords

synaptic loss
20
spinocerebellar ataxia
16
synaptic density
16
ataxia type
12
cerebellum brainstem
12
preataxic stage
12
synaptic
10
emission tomography
8
density observed
8
vivo synaptic
8

Similar Publications

Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes.

View Article and Find Full Text PDF

The Primary Cilia are Associated with the Axon Initial Segment in Neurons.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.

The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies.

View Article and Find Full Text PDF

Human genomic studies have identified protein-truncating variants in associated with both bipolar disorder and schizophrenia, implicating a shared disease mechanism driven by loss-of-function. AKAP11, a protein kinase A (PKA) adaptor, plays a key role in degrading the PKA-RI complex through selective autophagy. However, the neuronal functions of AKAP11 and the impact of its loss-of-function remains largely uncharacterized.

View Article and Find Full Text PDF

Background: Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!