Antisense oligonucleotides (ASOs) are promising tools for gene silencing and have been exploited as therapeutics for human disease. However, delivery of therapeutic ASOs to diseased tissues or cells and subsequent escape from the endosomes and release of ASO in the cytosol remain a challenge. Here, we reported a neutrophil-membrane-coated zeolitic imidazolate framework-8 (ZIF-8) nanodelivery platform (AM@ZIF@NM) for the targeted transportation of ASOs against microRNA-155 (anti-miRNA-155) to the endothelial cells in atherosclerotic lesions. Neutrophil membrane could improve plaque endothelial cells targeting through the interaction between neutrophil membrane protein CD18 and endothelial cell membrane protein intercellular adhesion molecule-1 (ICAM-1). The ZIF-8 "core" provided high loading capacity and efficient endolysosomal escaping ability. Delivery of anti-miR-155 effectively downregulated miR-155 expression and also saved the expression of its target gene BCL6. Moreover, RELA expression and the expression of its downstream target genes CCL2 and ICAM-1 were correspondingly reduced. Consequently, this anti-miR-155 nanotherapy can inhibit the inflammation of atherosclerotic lesions and alleviate atherosclerosis. Our study shows that the designed biomimetic nanodelivery system has great application prospects in the treatment of other chronic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c00288 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFViruses
January 2025
Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
As a ubiquitous human pathogen, the Epstein-Barr virus (EBV) has established lifelong persistent infection in about 95% of the adult population. The EBV infection is associated with approximately 200,000 human cancer cases and 140,000 deaths per year. The presence of EBV in tumor cells provides a unique advantage in targeting the viral genome (also known as episome), to develop anti-cancer therapeutics.
View Article and Find Full Text PDFViruses
December 2024
Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India.
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
Background/objectives: Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. This protects the negatively charged siRNA and enables transfection through the cell membrane.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Modern Agriculture, School of Life Sciences, Nantong University, Nantong 226019, China.
Proline, a critical osmoregulatory compound, is integral to various plant stress responses. The gene, which encodes the rate-limiting enzyme in proline biosynthesis, known as ∆1-pyrroline-5-carboxylate synthetase, is fundamental to these stress response pathways. While the functions of genes in plants have been extensively documented, their specific roles in cotton remain inadequately characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!