An efficient and practical N-arylation of hydantoins with substituted aryl/heteroaryl boronic acids has been established, assisted by CuF/MeOH under the base and ligand-free conditions at room temperature and open air. The protocol is general, and various N-arylated hydantoins have been prepared in excellent yields with exclusive regioselectivity. The CuF/MeOH combination was explored further to furnish selective N-arylation of 5-fluorouracil nucleosides. The efficiency of the protocol was also demonstrated with the gram-scale synthesis of the marketed drug, Nilutamide. A mechanistic study based on density functional theory calculations revealed that both hydantoin and MeOH are crucial for the generation of catalytically active copper species in the reaction process, in addition to their role as a reactant and solvent, respectively. The proposed reaction mechanism indicated that selective N-arylation of hydantoin is favorable in MeOH, which helps initiate the catalytic cycle by forming a square-planner Cu(II) complex where strong hydrogen-bond interactions are observed. This study is expected to improve the understanding of Cu(II)-catalyzed oxidative N-arylation reactions and for the de novo design and development of Cu-catalyzed coupling reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.3c00408DOI Listing

Publication Analysis

Top Keywords

selective n-arylation
8
cuf/meoh-catalyzed n-selective
4
n-selective chan-lam
4
chan-lam coupling
4
coupling hydantoins
4
hydantoins method
4
method mechanistic
4
mechanistic insight
4
insight efficient
4
efficient practical
4

Similar Publications

The C2- or C3-selective direct C-H arylation of nonsubstituted 1-pyrrole with aryl chlorides/nonaflates was achieved using catalysts derived from palladium and appropriate phosphine ligands. The site selectivity of the arylation can be switched by changing the ligands, and the C3-selective arylation of nonsubstituted 1-pyrrole was realized for the first time. BuOLi played an important role in suppressing N-arylation and accelerating C2- or C3-arylation.

View Article and Find Full Text PDF

The dsDNA-selective fluorescent-dye-based DNA damage assay was developed for DNA-encoded library (DEL) synthesis. For the various DEL synthesis conditions, the assay was validated through cross-checking with high-performance liquid chromatography (HPLC) analysis, and the fact was confirmed that the usage of a specific ratio of organic solvent can critically induce DNA damage. Also, the applicability of the assay was confirmed through the screening of the DNA-damaging condition of the on-DNA amide coupling reaction and Pd-catalyzed on-DNA -arylation reaction.

View Article and Find Full Text PDF

We report the development of an azanide (NH) surrogate which enables the facile conversion of electron-deficient (hetero)aryl halides into primary N-aryl amines under transition-metal-free conditions. The designed amidine reagent is easy to prepare, bench stable, and undergoes facile N-arylation under basic conditions at 40 °C. Intermediate N-aryl amidines are readily cleaved to form N-aryl amines in situ through hydrolysis or base-promoted elimination.

View Article and Find Full Text PDF

Mapping Electrophile Chemoselectivity in DalPhos/Nickel N-Arylation Catalysis: The Unusual Influence of Remote Sterics.

Chemistry

November 2024

Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.

We disclose herein our evaluation of competitive (hetero)aryl-X (X: Br>Cl>OTf) reactivity preferences in bisphosphine/Ni-catalyzed C-N cross-coupling catalysis, using furfurylamine as a prototypical nucleophile, and employing DalPhos and DPPF as representative ancillary ligands with established efficacy. Beyond this general (pseudo)halide ranking, other intriguing structure-reactivity trends were noted experimentally, including the unexpected observation that bulky alkyl (e. g.

View Article and Find Full Text PDF

Accessing a Diverse Set of Functional Red-Light Photoswitches by Selective Copper-Catalyzed Indigo -Arylation.

J Am Chem Soc

August 2024

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

The ability to correlate the structure of a molecule with its properties is the key to the rational and accelerated design of new functional compounds and materials. Taking photoswitches as an example, the thermal stability of the metastable state is a crucial property that dictates their application in molecular systems. Indigos have recently emerged as an attractive motif for designing photoswitchable molecules due to their red-light addressability, which can be advantageous in biomedical and material applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!