Accurate and computationally efficient motion estimation is a critical component of real-time ultrasound strain elastography (USE). With the advent of deep-learning neural network models, a growing body of work has explored supervised convolutional neural network (CNN)-based optical flow in the framework of USE. However, the above-said supervised learning was often done using simulated ultrasound data. The research community has questioned whether simulated ultrasound data containing simple motion can train deep-learning CNN models that can reliably track complex in vivo speckle motion. In parallel with other research groups' efforts, this study developed an unsupervised motion estimation neural network (UMEN-Net) for USE by adapting a well-established CNN model named PWC-Net. Our network's input is a pair of predeformation and postdeformation radio frequency (RF) echo signals. The proposed network outputs both axial and lateral displacement fields. The loss function consists of a correlation between the predeformation signal and the motion-compensated postcompression signal, smoothness of the displacement fields, and tissue incompressibility. Notably, an innovative correlation method known as the globally optimized correspondence (GOCor) volumes module developed by Truong et al. was used to replace the original Corr module to enhance our evaluation of signal correlation. The proposed CNN model was tested using simulated, phantom, and in vivo ultrasound data containing biologically confirmed breast lesions. Its performance was compared against other state-of-the-art methods, including two deep-learning-based tracking methods (MPWC-Net++ and ReUSENet) and two conventional tracking methods (GLUE and BRGMT-LPF). In summary, compared with the four known methods mentioned above, our unsupervised CNN model not only obtained higher signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for axial strain estimates but also improved the quality of the lateral strain estimates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2023.3243539 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Charles River Laboratories, Edinburgh, UK.
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!