A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-Time Multi-Map Saliency-Driven Gaze Behavior for Non-Conversational Characters. | LitMetric

Gaze behavior of virtual characters in video games and virtual reality experiences is a key factor of realism and immersion. Indeed, gaze plays many roles when interacting with the environment; not only does it indicate what characters are looking at, but it also plays an important role in verbal and non-verbal behaviors and in making virtual characters alive. Automated computing of gaze behaviors is however a challenging problem, and to date none of the existing methods are capable of producing close-to-real results in an interactive context. We therefore propose a novel method that leverages recent advances in several distinct areas related to visual saliency, attention mechanisms, saccadic behavior modelling, and head-gaze animation techniques. Our approach articulates these advances to converge on a multi-map saliency-driven model which offers real-time realistic gaze behaviors for non-conversational characters, together with additional user-control over customizable features to compose a wide variety of results. We first evaluate the benefits of our approach through an objective evaluation that confronts our gaze simulation with ground truth data using an eye-tracking dataset specifically acquired for this purpose. We then rely on subjective evaluation to measure the level of realism of gaze animations generated by our method, in comparison with gaze animations captured from real actors. Our results show that our method generates gaze behaviors that cannot be distinguished from captured gaze animations. Overall, we believe that these results will open the way for more natural and intuitive design of realistic and coherent gaze animations for real-time applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3244679DOI Listing

Publication Analysis

Top Keywords

gaze animations
16
gaze behaviors
12
gaze
11
multi-map saliency-driven
8
gaze behavior
8
non-conversational characters
8
virtual characters
8
characters
5
real-time multi-map
4
saliency-driven gaze
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!