Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study demonstrates transparent and flexible capacitive pressure sensors using a high- ionic gel composed of an insulating polymer (poly(vinylidene fluoride--trifluoroethylene--chlorofluoroethylene), P(VDF-TrFE-CFE)) blended with an ionic liquid (IL; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide, [EMI][TFSA]). The thermal melt recrystallization of the P(VDF-TrFE-CFE):[EMI][TFSA] blend films develops the characteristic topological semicrystalline surface of the films, making them highly sensitive to pressure. Using optically transparent and mechanically flexible graphene electrodes, a novel pressure sensor is realized with the topological ionic gel. The sensor exhibits a sufficiently large air dielectric gap between graphene and the topological ionic gel, resulting in a large variation in capacitance before and after the application of various pressures owing to the pressure-sensitive reduction of the air gap. The developed graphene pressure sensor exhibits a high sensitivity of 10.14 kPa at 20 kPa, rapid response times of <30 ms, and durable device operation with 4000 repeated ON/OFF cycles. Furthermore, broad-range detections from lightweight objects to human motion are successfully achieved, demonstrating that the developed pressure sensor with a self-assembled crystalline topology is potentially suitable for a variety of cost-effective wearable applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c01375 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!