Single-Cell Sequencing Data Analysis Unveiled HDAC1 as the Therapeutic Target for Chronic Pancreatitis.

Mol Biotechnol

Gastroenterology Department, The First Affiliated Hospital of Suzhou University, 899 Pinghai Road, Gusu District, Suzhou, 215000, Jiangsu, China.

Published: January 2024

Chronic pancreatitis (CP) as a progressive inflammatory disorder, remains untreatable. The novel treatment strategy for CP is imperative. We attempted to explore the therapeutic biomarkers for CP. The single-cell sequencing data were retrieved from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in idiopathic CP were identified, followed by function and pathway annotation, and PPI network established. DEGs of interest were verified in human tissue samples. The function of candidate biomarker was determined in the murine model with CP. A total of 208 genes were specially differentially expressed in idiopathic patients. Functional enrichment analysis showed DEGs were mainly enriched in glycogen catabolic process, RNA splicing, and glucagon signaling pathway. A PPI network centered on HDAC1 was constructed. HDAC1 was overexpressed in CP patients. The murine model with CP was induced by repetitive cerulein treatment. Silencing sh-HDAC1 treatment reversed cerulein-induced inflammatory cells accumulation, high expression of TGF-β1, and collagen 1 in pancreas in vivo. HDAC1 might be served as potential biomarker for CP. The present study provided insights into the molecular mechanism of CP that may be useful in further investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-023-00718-xDOI Listing

Publication Analysis

Top Keywords

single-cell sequencing
8
sequencing data
8
chronic pancreatitis
8
differentially expressed
8
ppi network
8
murine model
8
data analysis
4
analysis unveiled
4
hdac1
4
unveiled hdac1
4

Similar Publications

Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.

View Article and Find Full Text PDF

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol

January 2025

The Department of Experimental Medicine, Meishan City People's Hospital, No. 288, South Fourth Section, Dongpo Avenue, Meishan, 620000, Sichuan, China.

Background: Thyroid carcinoma (THCA) is the most common cancer of the endocrine system. Natural killer (NK) cell play an important role in tumor immune surveillance. The aim of this study was to explore the possible molecular mechanisms involved in NK cell in THCA to help the management and treatment of the disease.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.

View Article and Find Full Text PDF

Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!