AI Article Synopsis

  • Gymnema sylvestre is a medicinal plant in India known for its use in treating diabetes, but it currently lacks organized cultivation and is mostly harvested from the wild.
  • A study analyzed the genetic diversity of 118 accessions from 11 wild populations using DNA markers, revealing significant genetic variation at the species level but low variation among populations.
  • The findings suggested two main genetic clusters based on geographic regions, indicating that local environmental factors influence the genetic structure of G. sylvestre, which may help in future cultivation and conservation efforts.

Article Abstract

Background: Gymnema sylvestre (Retz.) R. Br. ex Schult. is a well-known medicinal plant against diabetes in India. There is as such no organized cultivation in India, and the plant is still being collected from the wild for their therapeutic uses. It is, therefore, important to estimate the genetic diversity and population genetic structure of G. sylvestre to ascertain the genetically diverse germplasm. The present study, therefore, was undertaken to analyze the genetic variability in 118 accessions belonging to 11 wild populations of G. sylvestre using directed amplification of minisatellite-region DNA (DAMD) and inter simple sequence repeats (ISSR).

Results: The present genetic analyses of 11 populations with 25 markers (8 DAMD and 17 ISSR) revealed significant genetic diversity (H = 0.26, I = 0.40, PPL = 80.89%) at a species level, while the average genetic diversity at the population level was low. Among the 11 populations studied, PCH and UTK populations showed maximum genetic diversity, followed by KNR and AMB, while TEL population revealed the lowest genetic diversity. AMOVA and G values (0.18) revealed that most of the genetic variations are found within populations and very less among populations, and higher gene flow (N = 2.29) was found to be responsible for the genetic homogenization of the populations. The clustering pattern resulting from the UPGMA dendrogram was in congruence with STRUCTURE and PCoA, segregating all the 11 populations into two main genetic clusters: cluster I (populations of North and Central India) and cluster II (populations of South India). The clustering patterns obtained from all three statistical methods indicate that the genetic structure in G. sylvestre populations corresponds to the geographical diversity of the populations and represents a strong genetic structure.

Conclusion: The genetically diverse populations identified during the present study could be a potential genetic resource for further prospecting and conserving this important plant resource.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079795PMC
http://dx.doi.org/10.1186/s43141-023-00497-7DOI Listing

Publication Analysis

Top Keywords

genetic diversity
24
genetic
15
populations
14
diversity population
12
genetic structure
12
population genetic
8
gymnema sylvestre
8
sylvestre retz
8
retz schult
8
damd issr
8

Similar Publications

Muscle Weakness - new genetic defect transmitted to Polish Holstein-Friesian cattle.

Pol J Vet Sci

December 2024

University of Warmia and Mazury, Department of Animal Genetics, 10-719 Olsztyn, Oczapowskiego 5. Email: Tel.: +48/89/5234714.

The aim of the study was to find out whether carriers of new genetic defect Muscle Weakness (MW) occur in the population of Polish Holstein-Friesian bulls. Fifty bulls were included in the analysis. Bulls were selected as having in the pedigree known carrier of MW.

View Article and Find Full Text PDF

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).

Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .

View Article and Find Full Text PDF

Gone with the Species: From Gene Loss to Gene Extinction.

Front Biosci (Schol Ed)

December 2024

Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan.

Background: Vertebrae protein-coding genes exhibit remarkable diversity and are organized into many gene families. These gene families have emerged through various gene duplication events, the most prominent being the two rounds of whole-genome duplication (WGD). The current research project analyzed a unique class of genes called "singletons".

View Article and Find Full Text PDF

Background: The Japanese quail () is a small migratory bird whose main habitats are located in East Asia, Russia, China, Japan, Korea, and India. The Japanese quail was first introduced into the Iraqi research sector in the early 1980s. This investigation aimed to identify the genetic divergence between the available genetic lines of the Japanese quail in Iraq as a first step to conducting further conservation and breeding, benefiting from studying the genetic diversity related to productivity, adaptation, and immune susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!