Parkinson's disease (PD) is a prevalent brain disorder, and PD diagnosis is crucial for treatment. Existing methods for PD diagnosis are mainly focused on behavior analysis, while the functional neurodegeneration of PD has not been well investigated. This paper proposes a method to signify functional neurodegeneration of PD with dynamic functional connectivity analysis. A functional near-infrared spectroscopy (fNIRS)-based experimental paradigm was designed to capture brain activation from 50 PD patients and 41 age-matched healthy controls in clinical walking tests. Dynamic functional connectivity was constructed with sliding-window correlation analysis, and k-means clustering was applied to generate the key brain connectivity states. Dynamic state features including state occurrence probability, state transition percentage and state statistical features were extracted to quantify the variations of brain functional networks. A support vector machine was trained to classify PD patients and healthy controls. Statistical analysis was conducted to investigate the difference between PD patients and healthy controls as well as the relationship between dynamic state features and the MDS-UPDRS sub-score of gait. The results showed that PD patients had a higher probability of transiting to brain connectivity states with high levels of information transmission compared with healthy controls. The MDS-UPDRS sub-score of gait and the dynamics state features showed a significant correlation. Moreover, the proposed method had better classification performances than the available fNIRS-based methods in terms of accuracy and F1 score. Thus, the proposed method well signified functional neurodegeneration of PD, and the dynamic state features may serve as promising functional biomarkers for PD diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2023.3242263 | DOI Listing |
Sci Adv
January 2025
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.
View Article and Find Full Text PDFCell Rep
January 2025
Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA. Electronic address:
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation.
View Article and Find Full Text PDFPflugers Arch
January 2025
Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
Cells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFCells
December 2024
Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!