This work delves upon developing a two-layer plasma-bonded microfluidic device with a microchannel layer and electrodes for electroanalytical detection of heavy metal ions. The three-electrode system was realized on an ITO-glass slide by suitably etching the ITO layer with the help of CO2 laser. The microchannel layer was fabricated using a PDMS soft-lithography method wherein the mold created by maskless lithography. The optimized dimensions opted to develop a microfluidic device with length of 20 mm, width of 0.5 mm and gap of 1 mm. The device, with bare unmodified ITO electrodes, was tested to detect Cu and Hg by a portable potentiostat connected with a smartphone. The analytes were introduced in the microfluidic device with a peristaltic pump at an optimal flow rate of [Formula: see text]/min. The device exhibited sensitive electro-catalytic sensing of both the metals by achieving an oxidation peak at -0.4 V and 0.1 V for Cu and Hg respectively. Furthermore, square wave voltammetry (SWV) approach was used to analyze the scan rate effect and concentration effect. The device also used to simultaneously detect both the analytes. During simultaneous sensing of Hg and Cu, the linear range was observed between [Formula: see text] to [Formula: see text], the limit of detection (LOD) was found to be [Formula: see text] and [Formula: see text] for Cu and Hg respectively. Further, no interference with other co-existing metal ions was found manifesting the specificity of the device to Cu and Hg. Finally, the device was successfully tested with real samples like tap water, lake water, and serum with remarkable recovery percentages. Such portable devices pave way for detecting various heavy metal ions in a point-of-care environment. The developed device can also be used for detection of other heavy metals like cadmium, lead, zinc etc., by modifying the working electrode with the various nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNB.2023.3241827DOI Listing

Publication Analysis

Top Keywords

microfluidic device
16
[formula text]
16
metal ions
12
device
9
unmodified ito
8
microchannel layer
8
detection heavy
8
heavy metal
8
text] [formula
8
[formula
5

Similar Publications

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Development of an automated microfluidic system for actinide separation and analysis.

J Chromatogr A

December 2024

Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Mechanical, Aerospace & Civil Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Mass spectroscopy and microfluidic technology, when combined, offer significant advantages in radiochemical analysis sample volume and cost reduction. A microfluidic device designed for efficiency has been developed. This device separates uranium from key trace elements by utilising UTEVA® chromatographic resins and nitric acid solutions of different concentrations for adsorption and recovery.

View Article and Find Full Text PDF

Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Time-resolved single-cell secretion analysis microfluidics.

Lab Chip

January 2025

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.

Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!