Atomically precise gold clusters play an important role in the development of high--element-based radiosensitizers, due to their intriguing structural diversity and advantages in correlating structures and properties. However, the synthesis of gold clusters with both water-solubility and single-crystal structure remains a challenge. In this study, atomically precise Au(S-TPP) clusters (TPP-SNa = sodium 3-(triphenylphosphonio)propane-1-thiolate bromide) showing both mitochondria-targeting ability and water-solubility were obtained via ligand design for enhanced radioimmunotherapy. Compared with Au(SG) clusters (SG = glutathione), Au(S-TPP) exhibited higher radiosensitization efficiency due to its mitochondria-targeting ability, higher ROS production capacity, and obvious inhibition upon thioredoxin reductase (TrxR). In addition, the enhanced radiotherapy-triggered abscopal effect in combination with checkpoint blockade displayed effective growth inhibition of distant tumors. This work reveals the ligand-regulated organelle targeting ability of metal clusters by which feasible strategies to promote their application in precise theranostics could be realized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c01068 | DOI Listing |
Nat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFMolecules
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.
A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada.
A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction and reduction of the acetyl group using borohydride, which resulted into the corresponding amino-alcohols. The naphthalene-based amino-alcohols underwent double dehydrations and double intramolecular cyclization with oxo-acids leading to one-pot formation of a C-N bond, a C-O bond and an amide bond in tandem, to generate two additional rings completing the steroidal framework.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [Pd(H)Ag(S){SP(OPr)}] (), synthesized through the inclusion of sulfide and hydride anions.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Rare earth phosphate (XPO) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO and SmPO with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!