Roux-en-Y gastric bypass surgery (RYGB) leads to improved glycemic control in individuals with severe obesity beyond the effects of weight loss alone. Here, We addressed the potential contribution of gut microbiota in mediating this favourable surgical outcome by using an established preclinical model of RYGB. 16S rRNA sequencing revealed that RYGB-treated Zucker fatty rats had altered fecal composition of various bacteria at the phylum and species levels, including lower fecal abundance of an unidentified species, compared with both sham-operated (Sham) and body weight-matched to RYGB-treated (BWM) rats. Correlation analysis further revealed that fecal abundance of this unidentified species linked with multiple indices of glycemic control uniquely in RYGB-treated rats. Sequence alignment of this species identified Longibaculum muris to be the most closely related species, and its fecal abundance positively correlated with oral glucose intolerance in RYGB-treated rats. In fecal microbiota transplant experiments, the improved oral glucose tolerance of RYGB-treated compared with BWM rats could partially be transferred to recipient germfree mice, independently of body weight. Unexpectedly, providing as a supplement to RYGB recipient mice further improved oral glucose tolerance, while administering alone to chow-fed or Western style diet-challenged conventionally raised mice had minimal metabolic impact. Taken together, our findings provide evidence that the gut microbiota contributes to weight loss-independent improvements in glycemic control after RYGB and demonstrate how correlation of a specific gut microbiota species with a host metabolic trait does not imply causation. Metabolic surgery remains the most effective treatment modality for severe obesity and its comorbidities, including type 2 diabetes. Roux-en-Y gastric bypass (RYGB) is a commonly performed type of metabolic surgery that reconfigures gastrointestinal anatomy and profoundly remodels the gut microbiota. While it is clear that RYGB is superior to dieting when it comes to improving glycemic control, the extent to which the gut microbiota contributes to this effect remains untested. In the present study, we uniquely linked fecal species, including Longibaculum muris, with indices of glycemic control after RYGB in genetically obese and glucose-intolerant rats. We further show that the weight loss-independent improvements in glycemic control in RYGB-treated rats can be transmitted via their gut microbiota to germfree mice. Our findings provide rare causal evidence that the gut microbiota contributes to the health benefits of metabolic surgery and have implications for the development of gut microbiota-based treatments for type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269853 | PMC |
http://dx.doi.org/10.1128/spectrum.05109-22 | DOI Listing |
J Transl Med
December 2024
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.
View Article and Find Full Text PDFBMC Complement Med Ther
December 2024
Oncology Department, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beixian Pavilion, No.5, Xicheng District, Beijing, China.
Background: The treatment of advanced colorectal cancer (CRC) has progressed slowly, with chemotherapy combined with targeted therapy being the first-line treatment for the disease, but the improvement in efficacy is not satisfactory. Compound Kushen injection (CKI) is one of the representative drugs of anti-cancer Chinese herbal injection drugs, which has been widely used in the adjunct treatment of cancer in China. The aim of this trial is to evaluate the efficacy and safety of CKI combined with first-line treatment of advanced CRC.
View Article and Find Full Text PDFCell Mol Immunol
January 2025
Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic.
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!