A common strategy used by bacteria to resist antibiotics is enzymatic degradation or modification. This reduces the antibiotic threat in the environment and is therefore potentially a collective mechanism that also enhances the survival of nearby cells. Collective resistance is of clinical significance, yet a quantitative understanding at the population level is still incomplete. Here, we develop a general theoretical framework of collective resistance by antibiotic degradation. Our modeling study reveals that population survival crucially depends on the ratio of timescales of two processes: the rates of population death and antibiotic removal. However, it is insensitive to molecular, biological, and kinetic details of the underlying processes that give rise to these timescales. Another important aspect of antibiotic degradation is the degree of cooperativity, related to the permeability of the cell wall to antibiotics and enzymes. These observations motivate a coarse-grained, phenomenological model, with two compound parameters representing the population's race to survival and single-cell effective resistance. We propose a simple experimental assay to measure the dose-dependent minimal surviving inoculum and apply it to Escherichia coli expressing several types of β-lactamase. Experimental data analyzed within the theoretical framework corroborate it with good agreement. Our simple model may serve as a reference for more complex situations, such as heterogeneous bacterial communities. Collective resistance occurs when bacteria work together to decrease the concentration of antibiotics in their environment, for example, by actively breaking down or modifying them. This can help bacteria survive by reducing the effective antibiotic concentration below their threshold for growth. In this study, we used mathematical modeling to examine the factors that influence collective resistance and to develop a framework to understand the minimum population size needed to survive a given initial antibiotic concentration. Our work helps to identify generic mechanism-independent parameters that can be derived from population data and identifies combinations of parameters that play a role in collective resistance. Specifically, it highlights the relative timescales involved in the survival of populations that inactivate antibiotics, as well as the levels of cooperation versus privatization. The results of this study contribute to our understanding of population-level effects on antibiotic resistance and may inform the design of antibiotic therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128016PMC
http://dx.doi.org/10.1128/mbio.02456-22DOI Listing

Publication Analysis

Top Keywords

collective resistance
20
antibiotic
9
minimal surviving
8
surviving inoculum
8
resistance
8
antibiotic resistance
8
theoretical framework
8
antibiotic degradation
8
antibiotic concentration
8
collective
7

Similar Publications

The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4.

View Article and Find Full Text PDF

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

Cherries are one of the economically important fruit crops in the Rosaceae family, genus. As the first fruits of the spring season in the northern hemisphere, their attractive appearance, intensely desirable tastes, high nutrients content, and consumer-friendly size captivate consumers worldwide. In the past 30 years, although cherry geneticists and breeders have greatly progressed in understanding the genetic and molecular basis underlying fruit quality, adaptation to climate change, and biotic and abiotic stress resistance, the utilization of cherry genomic data in genetics and molecular breeding has remained limited to date.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Context: Although some evidence shows the beneficial effects of meal replacements (MRs) on glucose metabolism as one of the main factors of diabetes, there are still no comprehensive findings in this field.

Objective: We investigated the effects of total and partial MRs on fasting blood sugar (FBS), insulin, glycated hemoglobin (HbA1c), and homeostatic model assessment for insulin resistance (HOMA-IR) in this comprehensive study and meta-analysis.

Data Sources: To find pertinent randomized controlled trials (RCTs) up to March 2024, databases including PubMed/Medline, Web of Science, Scopus, and Embase were searched.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!