A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DFML: Dynamic Federated Meta-Learning for Rare Disease Prediction. | LitMetric

Millions of patients suffer from rare diseases around the world. However, the samples of rare diseases are much smaller than those of common diseases. Hospitals are usually reluctant to share patient information for data fusion due to the sensitivity of medical data. These challenges make it difficult for traditional AI models to extract rare disease features for disease prediction. In this paper, we propose a Dynamic Federated Meta-Learning (DFML) approach to improve rare disease prediction. We design an Inaccuracy-Focused Meta-Learning (IFML) approach that dynamically adjusts the attention to different tasks according to the accuracy of base learners. Additionally, a dynamic weight-based fusion strategy is proposed to further improve federated learning, which dynamically selects clients based on the accuracy of each local model. Experiments on two public datasets show that our approach outperforms the original federated meta-learning algorithm in accuracy and speed with as few as five shots. The average prediction accuracy of the proposed model is improved by 13.28% compared with each hospital's local model.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2023.3239848DOI Listing

Publication Analysis

Top Keywords

federated meta-learning
12
rare disease
12
disease prediction
12
dynamic federated
8
rare diseases
8
local model
8
rare
5
dfml dynamic
4
federated
4
meta-learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!