In many real-world applications, data are represented by multiple instances and simultaneously associated with multiple labels. These data are always redundant and generally contaminated by different noise levels. As a result, several machine learning models fail to achieve good classification and find an optimal mapping. Feature selection, instance selection, and label selection are three effective dimensionality reduction techniques. Nevertheless, the literature was limited to feature and/or instance selection but has, to some extent, neglected label selection, which also plays an essential role in the preprocessing step, as label noises can adversely affect the performance of the underlying learning algorithms. In this article, we propose a novel framework termed multilabel Feature Instance Label Selection (mFILS) that simultaneously performs feature, instance, and label selections in both convex and nonconvex scenarios. To the best of our knowledge, this article offers, for the first time ever, a study using the triple and simultaneous selection of features, instances, and labels based on convex and nonconvex penalties in a multilabel scenario. Experimental results are built on some known benchmark datasets to validate the effectiveness of the proposed mFILS.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3237170DOI Listing

Publication Analysis

Top Keywords

convex nonconvex
12
label selection
12
instance selection
8
feature instance
8
instance label
8
selection
7
label
5
mfils tri-selection
4
tri-selection convex
4
nonconvex regularizations
4

Similar Publications

Background: Photon-counting computed tomography (CT) is an advanced imaging technique that enables multi-energy imaging from a single scan. However, the limited photon count assigned to narrow energy bins leads to increased quantum noise in the reconstructed spectral images. To address this issue, leveraging the prior information in the spectral images is essential.

View Article and Find Full Text PDF

Nonsmooth nonconvex optimization problems are pivotal in engineering practice due to the inherent nonsmooth and nonconvex characteristics of many real-world complex systems and models. The nonsmoothness and nonconvexity of the objective and constraint functions bring great challenges to the design and convergence analysis of the optimization algorithms. This paper presents a smooth gradient approximation neural network for such optimization problems, in which a smooth approximation technique with time-varying control parameter is introduced for handling nonsmooth nonregular objective functions.

View Article and Find Full Text PDF

The rapid deployment and enhanced communication capabilities of unmanned aerial vehicles (UAVs) have enabled numerous real-time sensing applications. These scenarios often necessitate task offloading and execution under stringent transmission delay constraints, particularly for time-critical applications such as disaster rescue and environmental monitoring. This paper investigates the improvement of MEC-based task offloading services in energy-constrained UAV networks using backscatter communication (BackCom) with non-orthogonal multiple access (BAC-NOMA).

View Article and Find Full Text PDF

Maximum correntropy criterion (MCC) has been an important method in machine learning and signal processing communities since it was successfully applied in various non-Gaussian noise scenarios. In comparison with the classical least squares method (LS), which takes only the second-order moment of models into consideration and belongs to the convex optimization problem, MCC captures the high-order information of models that play crucial roles in robust learning, which is usually accompanied by solving the non-convexity optimization problems. As we know, the theoretical research on convex optimizations has made significant achievements, while theoretical understandings of non-convex optimization are still far from mature.

View Article and Find Full Text PDF

In this research, demand response impact on the hosting capacity of solar photovoltaic for distribution system is investigated. The suggested solution model is formulated and presented as a tri-objective optimization that consider maximization of solar PV hosting capacity (HC), minimization of network losses (Loss) and maintaining node voltage deviation (V) within acceptable limits. These crucial objectives are optimized simultaneously as well as individually.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!