A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ERNet: An Efficient and Reliable Human-Object Interaction Detection Network. | LitMetric

Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction, which consequently limits its potential for real-world scenarios. In this paper, we address these challenges by proposing ERNet, an end-to-end trainable convolutional-transformer network for HOI detection. The proposed model employs an efficient multi-scale deformable attention to effectively capture vital HOI features. We also put forward a novel detection attention module to adaptively generate semantically rich instance and interaction tokens. These tokens undergo pre-emptive detections to produce initial region and vector proposals that also serve as queries which enhances the feature refinement process in the transformer decoders. Several impactful enhancements are also applied to improve the HOI representation learning. Additionally, we utilize a predictive uncertainty estimation framework in the instance and interaction classification heads to quantify the uncertainty behind each prediction. By doing so, we can accurately and reliably predict HOIs even under challenging scenarios. Experiment results on the HICO-Det, V-COCO, and HOI-A datasets demonstrate that the proposed model achieves state-of-the-art performance in detection accuracy and training efficiency. Codes are publicly available at https://github.com/Monash-CyPhi-AI-Research-Lab/ernet.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3231528DOI Listing

Publication Analysis

Top Keywords

human-object interaction
8
hoi detection
8
proposed model
8
instance interaction
8
detection
5
hoi
5
ernet efficient
4
efficient reliable
4
reliable human-object
4
interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!