Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calculations as possible. This framework integrates automatic density functional theory (DFT) calculations with an improved Monte Carlo tree search via reinforcement learning algorithm (MCTS-PG). As a successful example, we apply it to rapidly identify the desired alloy catalysts for CO activation and methanation within 200 MCTS-PG steps. To this end, seven alloy surfaces with high theoretical activity and selectivity for CO methanation are screened out and further validated by comprehensive free energy calculations. Our adaptive design framework enables the fast computational exploration of materials with desired properties via minimal DFT calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!