Recently, transformer-based architectures have been shown to outperform classic convolutional architectures and have rapidly been established as state-of-the-art models for many medical vision tasks. Their superior performance can be explained by their ability to capture long-range dependencies of their multi-head self-attention mechanism. However, they tend to overfit on small- or even medium-sized datasets because of their weak inductive bias. As a result, they require massive, labeled datasets, which are expensive to obtain, especially in the medical domain. This motivated us to explore unsupervised semantic feature learning without any form of annotation. In this work, we aimed to learn semantic features in a self-supervised manner by training transformer-based models to segment the numerical signals of geometric shapes inserted on original computed tomography (CT) images. Moreover, we developed a Convolutional Pyramid vision Transformer (CPT) that leverages multi-kernel convolutional patch embedding and local spatial reduction in each of its layer to generate multi-scale features, capture local information, and reduce computational cost. Using these approaches, we were able to noticeably outperformed state-of-the-art deep learning-based segmentation or classification models of liver cancer CT datasets of 5,237 patients, the pancreatic cancer CT datasets of 6,063 patients, and breast cancer MRI dataset of 127 patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2023.3237596 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Sensors (Basel)
January 2025
School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China.
Breast cancer (BC) is one of the most lethal cancers worldwide, and its early diagnosis is critical for improving patient survival rates. However, the extraction of key information from complex medical images and the attainment of high-precision classification present a significant challenge. In the field of signal processing, texture-rich images typically exhibit periodic patterns and structures, which are manifested as significant energy concentrations at specific frequencies in the frequency domain.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Directorate for Railways, Nemanjina 6, 11000 Belgrade, Serbia.
The manuscript conducts a comparative analysis to assess the impact of noise on medical images using a proposed threshold value estimation approach. It applies an innovative method for edge detection on images of varying complexity, considering different noise types and concentrations of noise. Five edges are evaluated on images with low, medium, and high detail levels.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Master's Program in Information and Computer Science, Doshisha University, Kyoto 610-0394, Japan.
The semantic segmentation of bone structures demands pixel-level classification accuracy to create reliable bone models for diagnosis. While Convolutional Neural Networks (CNNs) are commonly used for segmentation, they often struggle with complex shapes due to their focus on texture features and limited ability to incorporate positional information. As orthopedic surgery increasingly requires precise automatic diagnosis, we explored SegFormer, an enhanced Vision Transformer model that better handles spatial awareness in segmentation tasks.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!