Ebola virus (EBOV) is a single-strand RNA virus belonging to the family, which has been associated to most Ebola virus disease outbreaks to date, including the West African and the North Kivu epidemics between 2013 and 2022. This unprecedented health emergency prompted the search for effective medical countermeasures. Following up on the carbazole hit identified in our previous studies, we synthetized a new series of compounds, which demonstrated to prevent EBOV infection in cells by acting as virus entry inhibitors. The inhibitory activity was evaluated through the screening against surrogate models based on viral pseudotypes and further confirmed using replicative EBOV. Docking and molecular dynamics simulations joined to saturation transfer difference-nuclear magnetic resonance (STD-NMR) and mutagenesis experiments to elucidate the biological target of the most potent compounds. Finally, metabolic stability and pharmacokinetic studies were performed to confirm their therapeutic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150359PMC
http://dx.doi.org/10.1021/acs.jmedchem.2c01785DOI Listing

Publication Analysis

Top Keywords

ebola virus
12
virus entry
8
entry inhibitors
8
virus
5
'-phenylacetohydrazide derivatives
4
derivatives potent
4
potent ebola
4
inhibitors improved
4
improved pharmacokinetic
4
pharmacokinetic profile
4

Similar Publications

Fractional-order modeling of human behavior in infections: analysis using real data from Liberia.

Comput Methods Biomech Biomed Engin

January 2025

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran.

This paper presents a fractional-order model using the Caputo differential operator to study Ebola Virus Disease (EVD) dynamics, calibrated with Liberian data. The model demonstrates improved accuracy over integer-order counterparts, particularly in capturing behavioral changes during outbreaks. Stability analysis, Lyapunov functions, and a validated numerical method strengthen its mathematical foundation.

View Article and Find Full Text PDF

Self-amplifying RNA virus vectors for drug delivery.

Expert Opin Drug Deliv

January 2025

PanTherapeutics, Lutry, Switzerland.

Article Synopsis
  • Self-amplifying RNA viruses are effective tools for delivering genetic information and enhancing antigen production against infectious diseases and cancers by amplifying RNA within host cells.
  • Extensive research, including animal studies and clinical trials, has shown that these viral vectors can generate significant immune responses, with potential applications in treating tumors and protecting against pathogens.
  • The promising results from preclinical studies have led to the approval of a vaccine using a self-amplifying RNA virus for Ebola, indicating their potential in therapeutic interventions and future research in areas like neurological disorders.
View Article and Find Full Text PDF

New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs.

Front Chem

December 2024

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections.

View Article and Find Full Text PDF

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion.

Cell

December 2024

Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:

Article Synopsis
  • Viral factories (VFs) are membrane-less organelles where negative-sense RNA viruses, like Ebola, replicate and encapsidate their genomes.
  • Using advanced imaging techniques, researchers observed how viral nucleocapsids (NCs) change from loose formations to compact structures during the infection process.
  • The study found that as VFs mature, they become less spherical and more integrated with cellular components, which likely aids in the transportation of NCs for virus budding.
View Article and Find Full Text PDF

Ebola virus (EBOV) causes severe human disease. During late infection, EBOV virions are on the skin's surface; however, the permissive skin cell types and the route of virus translocation to the epidermal surface are unknown. We describe a human skin explant model and demonstrate that EBOV infection of human skin via basal media increases in a time-dependent and dose-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!