A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of interpopulation distance on dominance variance and average heterosis in hybrid populations within species. | LitMetric

Interpopulation improvement for crosses of close populations in crops and livestock depends on the amount of heterosis and the amount of variance of dominance deviations in the hybrids. It has been intuited that the further the distance between populations, the lower the amount of dominance variation and the higher the heterosis. Although experience in speciation and interspecific crosses shows, however, that this is not the case when populations are so distant-here we confine ourselves to the case of not-too-distant populations typical in crops and livestock. We present equations that relate the distance between 2 populations, expressed as Nei's genetic distance or as correlation of allele frequencies, quadratically to the amount of dominance deviations across all possible crosses and linearly to the expected heterosis averaging all possible crosses. The amount of variation of dominance deviations decreases with genetic distance until the point where allele frequencies are uncorrelated, and then increases for negatively correlated frequencies. Heterosis always increases with Nei's genetic distance. These expressions match well and complete previous theoretical and empirical findings. In practice, and for close enough populations, they mean that unless frequencies are negatively correlated, selection for hybrids will be more efficient when populations are distant.

Download full-text PDF

Source
http://dx.doi.org/10.1093/genetics/iyad059DOI Listing

Publication Analysis

Top Keywords

dominance deviations
12
genetic distance
12
populations
8
close populations
8
crops livestock
8
distance populations
8
amount dominance
8
nei's genetic
8
allele frequencies
8
negatively correlated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!