A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of FlhF, SRP-like GTPase with FliF, MS ring component assembling the initial structure of flagella in marine Vibrio. | LitMetric

Interaction of FlhF, SRP-like GTPase with FliF, MS ring component assembling the initial structure of flagella in marine Vibrio.

J Biochem

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.

Published: July 2023

Vibrio alginolyticus forms a single flagellum at its cell pole. FlhF and FlhG are known to be the main proteins responsible for the polar formation of single flagellum. MS-ring formation in the flagellar basal body appears to be an initiation step for flagellar assembly. The MS-ring is formed by a single protein, FliF, which has two transmembrane (TM) segments and a large periplasmic region. We had shown that FlhF was required for the polar localization of Vibrio FliF, and FlhF facilitated MS-ring formation when FliF was overexpressed in Escherichia coli cells. These results suggest that FlhF interacts with FliF to facilitate MS-ring formation. Here, we attempted to detect this interaction using Vibrio FliF fragments fused to a tag of Glutathione S-transferase in E. coli. We found that the N-terminal 108 residues of FliF, including the first TM segment and the periplasmic region, could pull FlhF down. In the first step, signal recognition particle (SRP) and its receptor are involved in the transport of membrane proteins to target them, which delivers them to the translocon. FlhF may have a similar or enhanced function as SRP, which binds to a region rich in hydrophobic residues.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvad029DOI Listing

Publication Analysis

Top Keywords

ms-ring formation
12
single flagellum
8
periplasmic region
8
vibrio flif
8
flif
7
flhf
6
interaction flhf
4
flhf srp-like
4
srp-like gtpase
4
gtpase flif
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!