A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Point-and-shoot Strategy based on Enzyme-assisted DNA "Paper-Cutting" to Construct Arbitrary Planar DNA Nanostructures. | LitMetric

Point-and-shoot Strategy based on Enzyme-assisted DNA "Paper-Cutting" to Construct Arbitrary Planar DNA Nanostructures.

Small

Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Guangdong, 518107, China.

Published: July 2023

DNA self-assembly provides a "bottom-up" route to fabricating complex shapes on the nanometer scale. However, each structure needs to be designed separately and carried out by professionally trained technicians, which seriously restricts its development and application. Herein, a point-and-shoot strategy based on enzyme-assisted DNA "paper-cutting" to construct planar DNA nanostructures using the same DNA origami as the template is reported. Precisely modeling the shapes with high precision in the strategy based on each staple strand of the desired shape structure hybridizes with its nearest neighbor fragments from the long scaffold strand. As a result, some planar DNA nanostructures by one-pot annealing the long scaffold strand and selected staple strands is constructed. The point-and-shoot strategy of avoiding DNA origami staple strands' re-designing based on different shapes breaks through the shape complexity limitation of the planar DNA nanostructures and enhances the simplicity of design and operation. Overall, the strategy's simple operability and great generality enable it to act as a candidate tool for manufacturing DNA nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202207622DOI Listing

Publication Analysis

Top Keywords

dna nanostructures
20
planar dna
16
point-and-shoot strategy
12
strategy based
12
dna
10
based enzyme-assisted
8
enzyme-assisted dna
8
dna "paper-cutting"
8
"paper-cutting" construct
8
nanostructures dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!