AI Article Synopsis

  • Conventional cancer treatments often have undesirable side effects that limit their effectiveness.
  • Researchers are exploring alternative methods that target specific biochemical characteristics of cancer cells, such as hypoxia, to induce cell death.
  • A new agent called biotinylated Co-integrated carbon dot (CoCD) has been developed, which selectively kills cancer cells by promoting hypoxia-induced apoptosis, showing higher efficiency in cancer cells compared to non-cancer cells.

Article Abstract

Conventional cancer treatments have systematic side effects that stand against its desirable therapeutic efficacy. Alternative strategies using biochemical features of cancer cells to promote apoptosis are finding notable significance. One such important biochemical feature of malignant cells is hypoxia, alteration of which can lead to cell death. Hypoxia inducible factor 1α (HIF-1α) has the key role in hypoxia generation. Herein, we synthesized biotinylated Co -integrated carbon dot (CoCD ) that specifically diagnose and selectively killed cancer cells with 3-3.1-fold higher efficiency over non-cancer cells by hypoxia induced apoptosis in absence of traditional therapeutic intervention. Immunoblotting assay in CoCD treated MDA-MB-231 cells confirmed the increased expression of HIF-1α that was responsible for efficient killing of cancer cells. In 2D cells and 3D tumor spheroid, CoCD treated cancer cells showed significant apoptosis that make CoCD a potential theranostic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202300928DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
cells hypoxia
12
carbon dot
8
theranostic agent
8
killing cancer
8
cells
8
hypoxia induced
8
induced apoptosis
8
cocd treated
8
cancer
6

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!