A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plant DNA barcode library for native flowering plants in the arid region of northwestern China. | LitMetric

Plant DNA barcode library for native flowering plants in the arid region of northwestern China.

Mol Ecol Resour

Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.

Published: August 2023

DNA barcoding is a well-established tool for rapid species identification and biodiversity monitoring. A reliable and traceable DNA barcode reference library with extensive coverage is necessary but unavailable for many geographical regions. The arid region in northwestern China, a vast area of about 2.5 million km , is ecologically fragile and often overlooked in biodiversity studies. In particular, DNA barcode data from the arid region in China are lacking. We develop and evaluate the efficacy of an extensive DNA barcode library for native flowering plants in the arid region of northwestern China. Plant specimens were collected, identified and vouchered for this purpose. The database utilized four DNA barcode markers, namely rbcL, matK, ITS and ITS2, for 1816 accessions (representing 890 species from 385 genera and 72 families), and consisted of 5196 barcode sequences. Individual barcodes varied in resolution rates: species- and genus-level rates for rbcL, matK, ITS and ITS2 were 79.9%-51.1%/76.1%, 79.9%-67.2%/88.9%, 85.0%-72.0%/88.2% and 81.0%-67.4%/84.9%, respectively. The three-barcode combination of rbcL + matK + ITS (RMI) revealed a higher species- and genus-level resolution (75.5%/92.1%, respectively). A total of 110 plastomes were newly generated as super-barcodes to increase species resolution for seven species-rich genera, namely Astragalus, Caragana, Lactuca, Lappula, Lepidium, Silene and Zygophyllum. Plastomes revealed higher species resolution compared to standard DNA barcodes and their combination. We suggest future databases include super-barcodes, especially for species-rich and complex genera. The plant DNA barcode library in the current study provides a valuable resource for future biological investigations in the arid regions of China.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.13797DOI Listing

Publication Analysis

Top Keywords

dna barcode
24
arid region
16
barcode library
12
region northwestern
12
northwestern china
12
plant dna
8
library native
8
native flowering
8
flowering plants
8
plants arid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!