Mitochondria contain 902 (yeast) to 1.136 (mouse, humans) verified proteins. Except for a very small number of mitochondrially encoded core components of the respiratory chain, mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol. Different import pathways direct proteins to their respective mitochondrial subcompartment (outer membrane, intermembrane space (IMS), inner membrane and matrix). Specific targeting signals in their sequence direct proteins to their target destination and allow the proteins to embark on their respective import pathway. The main import pathways are shown here on the poster and are introduced in the following, using the mitochondrial import system of the baker's yeast Saccharomyces cerevisiae as example. However, the mitochondrial import system of mammalian cells is highly similar and deviates only in minor aspects. Even the mitochondrial import machineries of less closely related eukaryotes, such as plants and trypanosomes, are very similar and adhere to the same general principles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14614DOI Listing

Publication Analysis

Top Keywords

mitochondrial import
12
import pathways
8
direct proteins
8
import system
8
import
6
proteins
5
mitochondrial
5
protein translocation
4
translocation mitochondria
4
mitochondria sorting
4

Similar Publications

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Mitochondrial protein import stress.

Nat Cell Biol

January 2025

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.

Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis.

View Article and Find Full Text PDF

MitoStores: stress-induced aggregation of mitochondrial proteins.

Biol Chem

January 2025

Cell Biology, 26562 RPTU University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany.

Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases.

View Article and Find Full Text PDF

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!