AI Article Synopsis

  • The study discusses how esterase/lipase-catalyzed hydrolysis of d, l-menthyl esters is a promising method for producing l-menthol, a key flavoring chemical, though current biocatalysts lack sufficient activity and selectivity.
  • Researchers cloned and engineered a highly active -nitrobenzyl esterase (pnbA-BS) to improve l-enantioselectivity by substituting Ala400 with Pro, significantly increasing the l-enantioselectivity value from 1.0 to 466.6.
  • The study also incorporated a green approach by eliminating organic solvents and employing a constant feeding method, resulting in a 48.9% conversion of d, l-menth

Article Abstract

Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses. However, the activity and l-enantioselectivity of the biocatalyst are not sufficient for meeting the industrial requirements. Herein, a highly active -nitrobenzyl esterase from 168 (pnbA-BS) was cloned and then engineered to enhance its l-enantioselectivity. On the basis of the strategy tailoring the steric exclusion effect and structural flexibility of the region adjacent to the substrate, the substitution of Ala400 to Pro caused a remarkable improvement in the value from 1.0 to 466.6. The variant A400P was purified and further confirmed with strict l-enantioselectivity in the selective hydrolysis of d, l-menthyl acetate, whereas the improved l-enantioselectivity caused decreased activity. To develop an efficient, easy-to-use, and green methodology, organic solvent was omitted and substrate constant feeding was integrated into the whole-cell catalyzed system. During the catalytic process, the selective hydrolysis of 1.0 M d, l-menthyl acetate in 14 h offered a conversion of 48.9%, e.e. value of >99%, and space-time yield of 160.52 g (l d).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068921PMC
http://dx.doi.org/10.1039/d3ra00490bDOI Listing

Publication Analysis

Top Keywords

selective hydrolysis
16
hydrolysis l-menthyl
16
l-menthyl acetate
12
engineering esterase
4
selective
4
esterase selective
4
hydrolysis
4
l-menthyl
4
acetate organic
4
organic solvent-free
4

Similar Publications

Phosphodiesterase 2 A (PDE2A) function is stimulated by cGMP to catabolize cAMP. However, neurological and neurochemical effects of PDE2A deficiency are poorly understood. To address this gap, we studied behavioral characteristics and cerebral morpho-chemical changes of adult male heterozygous C57BL/6-PDE2A+/- (HET), and wild type C57BL/6-PDE2A+/+ (WT) mice.

View Article and Find Full Text PDF

In this study, Diels-Alder reaction was performed to sulfolene and endo/exo-diacetate compounds. After a series of reactions, new conduritol A and F analogs containing oxo-bridge and naphthalene rings in their structures were synthesized. To the starting compound, bromination, elimination, singlet oxygen reaction, acetylation, selective oxidation with osmium tetroxide (OsO), and m-chloroperbenzoic acid (m-CPBA), re-acetylation, and finally hydrolysis of the compounds by NH(g)/MeOH reactions were carried out.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

A Prebiotic Route to Lactate from Acetaldehyde, Cyanide and Carbon Dioxide.

Chemistry

December 2024

University of Copenhagen, Chemistry, Universitetsparken 5, Kemisk Institut, 2100, Copenhagen, DENMARK.

The atmospheric concentration of carbon dioxide (CO2) has fluctuated throughout Earth's history. However, the role of CO2 in prebiotic chemistry has predominantly been limitedly postulated as a C1 precursor, which can be reduced to carbon monoxide or methane mimicking the Wood-Ljungdahl pathway. Herein we present neglected roles of CO2 as an active promoter in accessing biologically important C3-builidng blocks such as lactate, via redox-economic reaction cycles from cyanide (C1) and acetaldehyde (C2).

View Article and Find Full Text PDF

Dual-Valence Copper Nanostructures with Cu/Cu Interfaces for High-Sensitivity Glucose Electrochemical Sensing.

Nanomaterials (Basel)

December 2024

Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

Copper-based materials, renowned for their redox versatility and conductivity, have extensive applications in electrochemical sensing. Herein, we construct stable Cu/Cu interfaces within dual-valence copper nanostructures to achieve enhanced sensitivity in glucose sensing. By employing a hydrolysis method to tune Cu/Cu ratios precisely, we achieved an optimal electrochemical interface with heightened stability and reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!