In butterflies and moths, male-killing endosymbionts are transmitted from infected females via their eggs, and the male progeny then perish. This means that successful transmission of the parasite relies on the successful mating of the host. Paradoxically, at the population level, parasite transmission also reduces the number of adult males present in the final population for infected females to mate with. Here we investigate if successful female mating when males are rare is indeed a likely rate-limiting step in the transmission of male-killing in the African Monarch, . In Lepidoptera, successful pairings are hallmarked by the transfer of a sperm-containing spermatophore from the male to the female during copulation. Conveniently, this spermatophore remains detectable within the female upon dissection, and thus, spermatophore counts can be used to assess the frequency of successful mating in the field. We used such spermatophore counts to examine if altered sex ratios in the do indeed affect female mating success. We examined two different field sites in East Africa where males were often rare. Surprisingly, mated females carried an average of 1.5 spermatophores each, regardless of male frequency, and importantly, only 10-20% remained unmated. This suggests that infected females will still be able to mate in the face of either -mediated male killing and/or fluctuations in adult sex ratio over the wet-dry season cycle. These observations may begin to explain how the male-killing mollicute can still be successfully transmitted in a population where males are rare.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067808 | PMC |
http://dx.doi.org/10.1002/ece3.9956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!