A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical stimuli-induced CCL2 restores adult mouse cells to regenerate hair follicles. | LitMetric

Mechanical stimuli-induced CCL2 restores adult mouse cells to regenerate hair follicles.

Mol Ther Nucleic Acids

111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.

Published: June 2023

Aged cells have declined regenerative ability when subjected to environmental insult. Here we elucidate the mechanism by which mechanical stimulus induces hair regeneration at the microenvironmental regulation level using the hair plucking and organoid culture models. We observed that the skin cells harvested from post-plucking day 3 (PPD3) have the best self-organizing ability during skin organoid culture and have the highest hair regeneration upon transplantation. By bulk RNA sequencing (RNA-seq) and single-cell RNA-seq analysis and hybridization, we identified that the chemokine signaling pathway genes including CCL2 are significantly increased in the skin at PPD3 and in skin organoid cultures. Immunostaining shows that the PPD3 skin epithelial cells have increased multipotency, which is verified by the ability to self-organize to form epidermal aggregates during organoid culture. By adding CCL2 recombinant protein to the organoid culture using an environmental reprogramming protocol, we observed the PPD0 adult skin cells, which lose their regenerative ability can self-organize in organoid culture and regenerate hair follicles robustly upon transplantation. Our study demonstrates that CCL2 functions in immune regulation of hair regeneration under mechanical stimulus, and enhances cell multipotency during organoid culture. This provides a therapeutic potential for future clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068016PMC
http://dx.doi.org/10.1016/j.omtn.2023.03.002DOI Listing

Publication Analysis

Top Keywords

organoid culture
24
hair regeneration
12
regenerate hair
8
hair follicles
8
regenerative ability
8
mechanical stimulus
8
skin cells
8
skin organoid
8
ppd3 skin
8
ability self-organize
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!