The Indenyl Effect: Accelerated C-H Amidation of Arenes via Ind*Rh Nitrene Transfer Catalysis.

Angew Chem Int Ed Engl

Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.

Published: June 2023

AI Article Synopsis

Article Abstract

Investigations into C-H amidation reactions catalysed by cationic half-sandwich d metal complexes revealed that the indenyl-derived catalyst [Ind*RhCl ] significantly accelerated the directed ortho C-H amidation of benzoyl silanes using 1,4,2-dioxazol-5-ones. Ring slippage involving a haptotropic η to η rearrangement of the indenyl complex proposedly enables ligand substitution at the metal centre to proceed via associative, rather than dissociative pathways, leading to significant rate and yield enhancements. Intriguingly, this phenomenon appears specific for C-H amidation reactions involving weakly coordinating carbonyl-based directing groups with no acceleration observed for the corresponding reactions involving strongly coordinating nitrogen-based directing groups.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202302175DOI Listing

Publication Analysis

Top Keywords

c-h amidation
16
amidation reactions
8
reactions involving
8
directing groups
8
indenyl accelerated
4
c-h
4
accelerated c-h
4
amidation
4
amidation arenes
4
arenes ind*rh
4

Similar Publications

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly.

Angew Chem Int Ed Engl

January 2025

The University of Manchester, School of Chemistry & Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.

View Article and Find Full Text PDF

Even though α-arylation of ketones is attractive for direct C-H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) ,'-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Assessment of the Biocontrol Efficacy of Silver Nanoparticles Synthesized by Against Infected L. Germination.

Life (Basel)

November 2024

Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt.

This study investigated the biosynthesis, statistical optimization, characterization, and biocontrol activity of silver nanoparticles (AgNPs) produced by newly isolated sp. The strain TA-3N was identified based on the ITS gene sequence, together with its phenotypic characteristics (GenBank accession number: OM321439). The color change from light yellow to brown after the incubation period indicates AgNPs biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!