Saccharification is one of the most noteworthy processes in biomass-based biorefineries. In particular, the lytic polysaccharide monooxygenase has recently emerged as an oxidative cleavage-recalcitrant polysaccharide; however, there is insufficient information regarding its application to actual biomass. Accordingly, this study focused optimizing the recombinant expression level of a bacterial lytic polysaccharide monooxygenase from Thermobifida fusca (TfLPMO), which was characterized as a cellulolytic enzyme. Finally, the synergistic effect of the lytic polysaccharide monooxygenase and a commercial cellulase cocktail on the saccharification of agrowaste was investigated. TfLPMO functioned on various cellulosic and hemicellulosic substrates, and the combination of TfLPMO with cellulase exhibited a synergistic effect on the saccharification of agrowastes, resulting in a 19.2% and 14.1% increase in reducing sugars from rice straw and corncob, respectively. The results discussed herein can lead to an in-depth understanding of enzymatic saccharification and suggest viable options for valorizing agrowastes as renewable feedstocks in biorefineries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129015DOI Listing

Publication Analysis

Top Keywords

lytic polysaccharide
16
polysaccharide monooxygenase
16
monooxygenase thermobifida
8
thermobifida fusca
8
saccharification agrowastes
8
polysaccharide
5
saccharification
5
synergetic lytic
4
monooxygenase
4
fusca saccharification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!