A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Endodontic Forecasting Model Based on the Analysis of Preoperative Dental Radiographs: A Pilot Study on an Endodontic Predictive Deep Neural Network. | LitMetric

AI Article Synopsis

  • This study investigates the effectiveness of a deep convolutional neural network (DCNN) called PRESSAN-17 in detecting clinical features and predicting three-year outcomes of endodontic treatments using preoperative periapical radiographs.
  • A total of 598 single-root premolars that underwent endodontic treatment were analyzed, focusing on detecting seven clinical features and predicting outcomes, comparing PRESSAN-17 with a traditional model (RESNET-18).
  • Results indicated that PRESSAN-17 performed significantly better than RESNET-18 in feature detection and showed promising accuracy in prognostic predictions, with noticeable differences in metric evaluations (e.g., receiver-operating-characteristic curves).

Article Abstract

Introduction: This study aimed to evaluate the use of deep convolutional neural network (DCNN) algorithms to detect clinical features and predict the three-year outcome of endodontic treatment on preoperative periapical radiographs.

Methods: A database of single-root premolars that received endodontic treatment or retreatment by endodontists with presence of three-year outcome was prepared (n = 598). We constructed a 17-layered DCNN with a self-attention layer (Periapical Radiograph Explanatory System with Self-Attention Network [PRESSAN-17]), and the model was trained, validated, and tested to 1) detect 7 clinical features, that is, full coverage restoration, presence of proximal teeth, coronal defect, root rest, canal visibility, previous root filling, and periapical radiolucency and 2) predict the three-year endodontic prognosis by analyzing preoperative periapical radiographs as an input. During the prognostication test, a conventional DCNN without a self-attention layer (residual neural network [RESNET]-18) was tested for comparison. Accuracy and area under the receiver-operating-characteristic curve were mainly evaluated for performance comparison. Gradient-weighted class activation mapping was used to visualize weighted heatmaps.

Results: PRESSAN-17 detected full coverage restoration (area under the receiver-operating-characteristic curve = 0.975), presence of proximal teeth (0.866), coronal defect (0.672), root rest (0.989), previous root filling (0.879), and periapical radiolucency (0.690) significantly, compared to the no-information rate (P < .05). Comparing the mean accuracy of 5-fold validation of 2 models, PRESSAN-17 (67.0%) showed a significant difference to RESNET-18 (63.4%, P < .05). Also, the area under average receiver-operating-characteristic of PRESSAN-17 was 0.638, which was significantly different compared to the no-information rate. Gradient-weighted class activation mapping demonstrated that PRESSAN-17 correctly identified clinical features.

Conclusions: Deep convolutional neural networks can detect several clinical features in periapical radiographs accurately. Based on our findings, well-developed artificial intelligence can support clinical decisions related to endodontic treatments in dentists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2023.03.015DOI Listing

Publication Analysis

Top Keywords

neural network
12
detect clinical
8
clinical features
8
predict three-year
8
three-year outcome
8
endodontic treatment
8
preoperative periapical
8
dcnn self-attention
8
self-attention layer
8
full coverage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: