Background: Neurodegenerative illnesses like Parkinson's and Alzheimer's are largely caused by the accumulation of aggregated proteins. Heat shock proteins (HSPs), which are molecular chaperons, have been linked with the modulation of β-glucocerebrosidase (GCase) function encoded by GBA1 and Synucleinopathies. Herein, the chaperonic properties of African walnut ethanolic extract (WNE) in manganese-induced Parkinsonian neuropathology in the hippocampus was examined.

Methodology: 48 adult male rats weighing 185 g ± 10 g were randomly assigned into 6 (A - F) groups (n = 8) and treated orally as follows: A-PBS (1 ml daily for 28 days), B-WNE (200 mg/kg daily for 28 days), C- WNE (400 mg/kg daily for 28 days), D-Mn (100 mg/kg daily for 28 days), E-Mn plus WNE (100 mg/kg Mn + 200 mg/kg WNE daily concomitantly for 28 days), F-Mn plus WNE (100 mg/kg Mn + 400 mg/kg WNE daily concomitantly for 28 days).

Results: Rats treated with WNE showed increased levels of HSP70 and HSP90 in comparison with the Mn-intoxicated group. GCase activity also increased significantly in animals treated with WNE. Our results further revealed the therapeutic tendencies of WNE against Mn toxicity by modulating oligomeric α-synuclein levels, redox activity, and glucose bioenergetics. Furthermore, immunohistochemical evaluation revealed reduced expression of neurofibrillary tangles, and reactive astrogliosis following WNE treatment.

Conclusion: The ethanolic extract of African Walnut induced the activation of HSPs and increased the expression of GBA1 gene in the hippocampus. Activated heat shock proteins suppressed neurodegenerative changes due to Manganese toxicity. WNE was also shown to modulate neuroinflammatory, bioenergetics and neural redox balance in Parkinson-like neuropathology. This study was limited to the use of crude walnut extract and the evaluation of non-motor cascades of Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2023.102271DOI Listing

Publication Analysis

Top Keywords

daily days
16
african walnut
12
wne
11
heat shock
8
shock proteins
8
ethanolic extract
8
wne 100 mg/kg
8
wne daily
8
daily concomitantly
8
treated wne
8

Similar Publications

Aims: According to the 2023 International Consensus, glucose metrics derived from two-week-long continuous glucose monitoring (CGM) can be extrapolated up to 90 days before. However, no studies have focused on adults with type 1 diabetes (T1D) on multiple daily injections (MDIs) and with second-generation intermittently scanned CGM (isCGM) sensors in a real-world setting.

Methods: This real-world, retrospective study included 539 90-day isCGM data from 367 adults with T1D on MDI therapy.

View Article and Find Full Text PDF

Background: Smoking prevalence among U.S. adults experiencing homelessness is ≥70 %.

View Article and Find Full Text PDF

Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.

View Article and Find Full Text PDF

Background: In the present study, we aimed to evaluate the effects of medroxyprogesterone on hospital short clinical outcomes and ABG parameters in patients with chronic obstructive pulmonary disease (COPD) exacerbation under treatments with noninvasive ventilation (NIV) treated with progesterone 15 mg in comparison with placebo.

Materials And Methods: This is a double-blinded clinical trial that was performed in 2020-2021 in Isfahan, Iran, on 60 patients with COPD exacerbation that require NIV. All patients received short-acting beta-agonists, short-acting anticholinergics, systemic corticosteroids, and NIV.

View Article and Find Full Text PDF

Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!